Page 83 - Read Online
P. 83

Benusa et al. Neuroimmunol Neuroinflammation 2020;7:248-63  I  http://dx.doi.org/10.20517/2347-8659.2020.03         Page 261

                   glia in the medial prefrontal cortex. J Neuroendocrinol 2019;31:e12762.
               62.  Bertolotto A, Caterson B, Canavese G, Migheli A, Schiffer D. Monoclonal antibodies to keratan sulfate immunolocalize ramified
                   microglia in paraffin and cryostat sections of rat brain. J Histochem Cytochem 1993;41:481-7.
               63.  Scheffel J, Regen T, Van Rossum D, Seifert S, Ribes S, et al. Toll-like receptor activation reveals developmental reorganization and
                   unmasks responder subsets of microglia. Glia 2012;60:1930-43.
               64.  Kiyofuji K, Kurauchi Y, Hisatsune A, Seki T, Mishima S, et al. A natural compound macelignan protects midbrain dopaminergic
                   neurons from inflammatory degeneration via microglial arginase-1 expression. Eur J Pharmacol 2015;760:129-35.
               65.  Silvin A, Ginhoux F. Microglia heterogeneity along a spatio-temporal axis: more questions than answers. Glia 2018;66:2045-57.
               66.  Marín-Teva JL, Cuadros MA, Martín-Oliva D, Navascués J. Microglia and neuronal cell death. Neuron Glia Biol 2011;7:25-40.
               67.  Imamura K, Ito M, Suzumura A, Asai J, Takahashi A. Generation and characterization of monoclonal antibodies against rat microglia
                   and ontogenic distribution of positive cells. Lab Invest 1990;63:853-61.
               68.  Stowell RD, Wong EL, Batchelor HN, Mendes MS, Lamantia CE, et al. Cerebellar microglia are dynamically unique and survey
                   Purkinje neurons in vivo. Dev Neurobiol 2018;78:627-44.
               69.  Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, et al. Generation of a microglial developmental index in mice and in
                   humans reveals a sex difference in maturation and immune reactivity. Glia 2017;65:1504-20.
               70.  Lynch MA. The multifaceted profile of activated microglia. Mol Neurobiol 2009;40:139-56.
               71.  Diestel A, Troeller S, Billecke N, Sauer IM, Berger F, et al. Mechanisms of hypothermia-induced cell protection mediated by
                   microglial cells in vitro. Eur J Neurosci 2010;31:779-87.
               72.  Bisht K, Sharma KP, Lecours C, Sánchez MG, El Hajj H, et al. Dark microglia: a new phenotype predominantly associated with
                   pathological states. Glia 2016;64:826-39.
               73.  Cardozo PL, de Lima IBQ, Maciel EMA, Silva NC, Dobransky T, et al. Synaptic elimination in neurological disorders. Curr
                   Neuropharmacol 2019;17:1071-95.
               74.  Rajendran L, Paolicelli RC. Microglia-mediated synapse loss in Alzheimer’s disease. J Neurosci 2018;38:2911-9.
               75.  Jackson J, Jambrina E, Li J, Marston H, Menzies F, et al. Targeting the synapse in Alzheimer’s disease. Front Neurosci 2019;13:735.
               76.  Stadelmann C, Albert M, Wegner C, Brück W. Cortical pathology in multiple sclerosis. Curr Opin Neurol 2008;21:229-34.
               77.  Campbell G, Licht-Mayer S, Mahad D. Targeting mitochondria to protect axons in progressive MS. Neurosci Lett 2019;710:134258.
               78.  Baalman K, Marin MA, Ho TS, Godoy M, Cherian L, et al. Axon initial segment-associated microglia. J Neurosci 2015;35:2283-92.
               79.  Clark KC, Josephson A, Benusa SD, Hartley RK, Baer M, et al. Compromised axon initial segment integrity in EAE is preceded by
                   microglial reactivity and contact. Glia 2016;64:1190-209.
               80.  Benusa SD, George NM, Sword BA, DeVries GH, Dupree JL. Acute neuroinflammation induces AIS structural plasticity in a NOX2-
                   dependent manner. J Neuroinflammation 2017;14:116.
               81.  Clark K, Sword BA, Dupree JL. Oxidative stress induces disruption of the axon initial segment. ASN Neuro 2017;9:1759091417745426.
               82.  Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo.
                   Science 2005;308:1314-8.
               83.  Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, et al. Surveillance, phagocytosis, and inflammation: how never-resting
                   microglia influence adult hippocampal neurogenesis. Neural Plast 2014;2014:610343.
               84.  Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003;3:23-35.
               85.  Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014;6:13.
               86.  Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 2016;19:987-91.
               87.  Zhou T, Huang Z, Sun X, Zhu X, Zhou L, et al. Microglia polarization with M1/M2 phenotype changes in rd1 mouse model of retinal
                   degeneration. Front Neuroanat 2017;11:77.
               88.  Peng H, Geil Nickell CR, Chen KY, McClain JA, Nixon K. Increased expression of M1 and M2 phenotypic markers in isolated
                   microglia after four-day binge alcohol exposure in male rats. Alcohol 2017;62:29-40.
               89.  Chiu IM, Morimoto ET, Goodarzi H, Liao JT, O’Keeffe S, et al. A neurodegeneration-specific gene-expression signature of acutely
                   isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 2013;4:385-401.
               90.  Rosi S. A polarizing view on posttraumatic brain injury inflammatory response. Brain Circ 2016;2:126-8.
               91.  Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, et al. A unique microglia type associated with
                   restricting development of Alzheimer’s disease. Cell 2017;169:1276-90.e17.
               92.  Friedman BA, Srinivasan K, Ayalon G, Meilandt WJ, Lin H, et al. Diverse brain myeloid expression profiles reveal distinct microglial
                   activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep 2018;22:832-47.
               93.  Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, et al. TREM2 deficiency attenuates neuroinflammation and protects against
                   neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 2017;114:11524-9.
               94.  Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, et al. The TREM2-APOE pathway drives the transcriptional phenotype of
                   dysfunctional microglia in neurodegenerative diseases. Immunity 2017;47:566-81.e9.
               95.  Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, et al. High-dimensional single-cell mapping of central nervous system
                   immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 2018;48:599.
               96.  Deczkowska A, Amit I, Schwartz M. Microglial immune checkpoint mechanisms. Nat Neurosci 2018;21:779-86.
               97.  Poliani PL, Wang Y, Fontana E, Robinette ML, Yamanishi Y, et al. TREM2 sustains microglial expansion during aging and response to
                   demyelination. J Clin Invest 2015;125:2161-70.
               98.  Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s
                   disease model. Cell 2015;160:1061-71.
               99.  Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity
                   2016;44:505-15.
   78   79   80   81   82   83   84   85   86   87   88