Page 82 - Read Online
P. 82

Page 260         Benusa et al. Neuroimmunol Neuroinflammation 2020;7:248-63  I  http://dx.doi.org/10.20517/2347-8659.2020.03

               29.  Stratoulias V, Venero JL, Tremblay M, Joseph B. Microglial subtypes: diversity within the microglial community. EMBO J
                   2019;38:e101997.
               30.  Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, et al. Fate mapping analysis reveals that adult microglia derive from primitive
                   macrophages. Science 2010;330:841-5.
               31.  McCarthy MM. Location, location, location: microglia are where they live. Neuron 2017;95:233-5.
               32.  Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, et al. The microglial sensome revealed by direct RNA sequencing.
                   Nat Neurosci 2013;16:1896-905.
               33.  Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, et al. Identification of a unique TGF-β-dependent molecular and
                   functional signature in microglia. Nat Neurosci 2014;17:131-43.
               34.  Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, et al. Environment drives selection and function of enhancers
                   controlling tissue-specific macrophage identities. Cell 2014;159:1327-40.
               35.  Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, et al. Microglial brain region-dependent diversity and selective regional
                   sensitivities to ageing. Nat Neurosci 2016;19:504-16.
               36.  Sokolowski JD, Chabanon-Hicks CN, Han CZ, Heffron DS, Mandell JW. Fractalkine is a “find-me” signal released by neurons
                   undergoing ethanol-induced apoptosis. Front Cell Neurosci 2014;8:360.
               37.  Fricker M, Oliva-Martín MJ, Brown GC. Primary phagocytosis of viable neurons by microglia activated with LPS or Aβ is dependent
                   on calreticulin/LRP phagocytic signalling. J Neuroinflammation 2012;9:196.
               38.  Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse
                   brain. Neuroscience 1990;39:151-70.
               39.  De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA, et al. Local cues establish and maintain region-specific phenotypes of
                   basal ganglia microglia. Neuron 2017;95:341-56.e6.
               40.  Yanguas-Casás N, Crespo-Castrillo A, de Ceballos ML, Chowen JA, Azcoitia I, et al. Sex differences in the phagocytic and migratory
                   activity of microglia and their impairment by palmitic acid. Glia 2018;66:522-37.
               41.  Tay TL, Savage JC, Hui CW, Bisht K, Tremblay MÈ. Microglia across the lifespan: from origin to function in brain development,
                   plasticity and cognition. J Physiol (Lond) 2017;595:1929-45.
               42.  Rigato C, Swinnen N, Buckinx R, Couillin I, Mangin JM, et al. Microglia proliferation is controlled by P2X7 receptors in a Pannexin-
                   1-independent manner during early embryonic spinal cord invasion. J Neurosci 2012;32:11559-73.
               43.  Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, et al. Stroma-derived interleukin-34 controls the development and maintenance of
                   langerhans cells and the maintenance of microglia. Immunity 2012;37:1050-60.
               44.  Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development
                   of Langerhans cells and microglia. Nat Immunol 2012;13:753-60.
               45.  Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, et al. Microglial brain region-dependent diversity and selective regional
                   sensitivities to aging. Nat Neurosci 2016;19:504-16.
               46.  Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the developing rat brain. J Neurochem 2012;120:948-63.
               47.  Posillico CK, Terasaki LS, Bilbo SD, Schwarz JM. Examination of sex and minocycline treatment on acute morphine-induced
                   analgesia and inflammatory gene expression along the pain pathway in Sprague-Dawley rats. Biol Sex Differ 2015;6:33.
               48.  Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, et al. Sex-specific features of microglia from adult mice. Cell Rep 2018;23:3501-11.
               49.  Nelson LH, Warden S, Lenz KM. Sex differences in microglial phagocytosis in the neonatal hippocampus. Brain Behav Immun
                   2017;64:11-22.
               50.  Guneykaya D, Ivanov A, Hernandez DP, Haage V, Wojtas B, et al. Transcriptional and translational differences of microglia from male
                   and female brains. Cell Rep 2018;24:2773-83.e6.
               51.  Lenz KM, Nugent BM, Haliyur R, McCarthy MM. Microglia are essential to masculinization of brain and behavior. J Neurosci
                   2013;33:2761-72.
               52.  Zhou YQ, Liu DQ, Chen SP, Sun J, Wang XM, et al. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol Res
                   2018;134:305-10.
               53.  Naderi Y, Panahi Y, Barreto GE, Sahebkar A. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic
                   review. Neural Regen Res 2020;15:773-82.
               54.  Crain JM, Nikodemova M, Watters JJ. Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central
                   nervous system in male and female mice. J Neurosci Res 2013;91:1143-51.
               55.  Mangold CA, Wronowski B, Du M, Masser DR, Hadad N, et al. Sexually divergent induction of microglial-associated
                   neuroinflammation with hippocampal aging. J Neuroinflammation 2017;14:141.
               56.  Puy L, MacLusky NJ, Becker L, Karsan N, Trachtenberg J, et al. Immunocytochemical detection of androgen receptor in human
                   temporal cortex characterization and application of polyclonal androgen receptor antibodies in frozen and paraffin-embedded tissues. J
                   Steroid Biochem Mol Biol 1995;55:197-209.
               57.  Mor G, Nilsen J, Horvath T, Bechmann I, Brown S, et al. Estrogen and microglia: a regulatory system that affects the brain. J
                   Neurobiol 1999;40:484-96.
               58.  Crain JM, Watters JJ. Estrogen and P2 purinergic receptor systems in microglia: therapeutic targets for neuroprotection. Open Drug
                   Discov J 2010;2:148-67.
               59.  Vegeto E, Bonincontro C, Pollio G, Sala A, Viappiani S, et al. Estrogen prevents the lipopolysaccharide-induced inflammatory
                   response in microglia. J Neurosci 2001;21:1809-18.
               60.  Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K. Steroid hormone receptor expression and function in microglia.
                   Glia 2008;56:659-74.
               61.  Bollinger JL, Salinas I, Fender E, Sengelaub DR, Wellman CL. Gonadal hormones differentially regulate sex-specific stress effects on
   77   78   79   80   81   82   83   84   85   86   87