Page 84 - Read Online
P. 84

Page 262         Benusa et al. Neuroimmunol Neuroinflammation 2020;7:248-63  I  http://dx.doi.org/10.20517/2347-8659.2020.03

               100. Chen SH, Oyarzabal EA, Hong JS. Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic
                   neuroinflammation and progressive neurodegeneration. Curr Opin Pharmacol 2016;26:54-60.
               101. Ransohoff RM, Khoury JE. Microglia in health and disease. Cold Spring Harb Perspect Biol 2016;8:a020560.
               102. Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, et al. NOX2 drives M1-like microglial/macrophage activation and
                   neurodegeneration following experimental traumatic brain injury. Brain Behav Immun 2016;58:291-309.
               103. Hool LC. Evidence for the regulation of L-type Ca2+ channels in the heart by reactive oxygen species: mechanism for mediating
                   pathology. Clin Exp Pharmacol Physiol 2008;35:229-34.
               104. Hool LC, Arthur PG. Decreasing cellular hydrogen peroxide with catalase mimics the effects of hypoxia on the sensitivity of the
                   L-type Ca2+ channel to β-adrenergic receptor stimulation in cardiac myocytes. Circ Res 2002;91:601-9.
               105. Hudasek K, Brown ST, Fearon IM. H2O2 regulates recombinant Ca2+ channel α1C subunits but does not mediate their sensitivity to
                   acute hypoxia. Biochem Biophys Res Commun 2004;318:135-41.
               106. Mossakowski AA, Pohlan J, Bremer D, Lindquist R, Millward JM, et al. Tracking CNS and systemic sources of oxidative stress during
                   the course of chronic neuroinflammation. Acta Neuropathol 2015;130:799-814.
               107. Benned-Jensen T, Christensen RK, Denti F, Perrier JF, Rasmussen HB, et al. Live imaging of Kv7.2/7.3 cell surface dynamics at the axon
                   initial segment: high steady-state stability and calpain-dependent excitotoxic downregulation revealed. J Neurosci 2016;36:2261-6.
               108. Del Puerto A, Fronzaroli-Molinieres L, Perez-Alvarez MJ, Giraud P, Carlier E, et al. ATP-P2X7 receptor modulates axon initial
                   segment composition and function in physiological conditions and brain injury. Cereb Cortex 2015;25:2282-94.
               109. Evans MD, Sammons RP, Lebron S, Dumitrescu AS, Watkins TB, et al. Calcineurin signaling mediates activity-dependent relocation
                   of the axon initial segment. J Neurosci 2013;33:6950-63.
               110. Schafer DP, Jha S, Liu F, Akella T, McCullough LD, et al. Disruption of the axon initial segment cytoskeleton is a new mechanism for
                   neuronal injury. J Neurosci 2009;29:13242-54.
               111.  von Bernhardi R, Heredia F, Salgado N, Muñoz P. Microglia function in the normal brain. Adv Exp Med Biol 2016;949:67-92.
               112. Bilimoria PM, Stevens B. Microglia function during brain development: new insights from animal models. Brain Res 2015;1617:7-17.
               113. Kato G, Inada H, Wake H, Akiyoshi R, Miyamoto A, et al. Microglial contact prevents excess depolarization and rescues neurons from
                   excitotoxicity. eNeuro 2016;3:ENEURO.0004-16.2016.
               114. Li Y, Du XF, Liu CS, Wen ZL, Du JL. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev
                   Cell 2012;23:1189-202.
               115. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo
                   and determine the fate of ischemic terminals. J Neurosci 2009;29:3974-80.
               116.  Tremblay MÈ, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol
                   2010;8:e1000527.
               117. Beeton C, Garcia A, Chandy KG. Induction and clinical scoring of chronic-relapsing experimental autoimmune encephalomyelitis. J
                   Vis Exp 2007:224.
               118. Kipp M, Nyamoya S, Hochstrasser T, Amor S. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain
                   Pathol 2017;27:123-37.
               119. Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 2012;15:1074-7.
               120. Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, et al. Redox regulation of NF-κB p50 and M1 polarization in microglia. Glia
                   2015;63:423-40.
               121. Qin L, Wu X, Block ML, Liu Y, Breese GR, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration.
                   Glia 2007;55:453-62.
               122. Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, et al. The relevance of animal models in multiple sclerosis research.
                   Pathophysiology 2011;18:21-9.
               123. Dupree JL, Mason JL, Marcus JR, Stull M, Levinson R, et al. Oligodendrocytes assist in the maintenance of sodium channel clusters
                   independent of the myelin sheath. Neuron Glia Biol 2004;1:179-92.
               124. Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, et al. Experimental models of demyelination and
                   remyelination. Neurologia 2020;35:32-9.
               125. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large
                   gene lists. Nucleic Acids Res 2009;37:1-13.
               126. Das A, Chai JC, Kim SH, Lee YS, Park KS, et al. Transcriptome sequencing of microglial cells stimulated with TLR3 and TLR4
                   ligands. BMC Genomics 2015;16:517.
               127. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.
                   Nat Protoc 2009;4:44-57.
               128. Hanamsagar R, Alter MD, Block CS, Sullivan H, Bolton JL, et al. Generation of a microglial developmental index in mice and in
                   humans reveals a sex difference in maturation and immune reactivity. Glia 2017;65:1504-20.
               129. Hiremath MM, Saito Y, Knapp GW, Ting JP, Suzuki K, et al. Microglial/macrophage accumulation during cuprizone-induced
                   demyelination in C57BL/6 mice. J Neuroimmunol 1998;92:38-49.
               130. Fjær S, Bø L, Lundervold A, Myhr KM, Pavlin T, et al. Deep gray matter demyelination detected by magnetization transfer ratio in the
                   cuprizone model. PLoS One 2013;8:e84162.
               131. Dupree JL, Girault JA, Popko B. Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol
                   1999;147:1145-52.
               132. Pomicter AD, Shroff SM, Fuss B, Sato-Bigbee C, Brophy PJ, et al. Novel forms of neurofascin 155 in the central nervous system:
                   alterations in paranodal disruption models and multiple sclerosis. Brain 2010;133:389-405.
               133. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, et al. Direct multiplexed measurement of gene expression with color-coded
   79   80   81   82   83   84   85   86   87   88   89