Page 74 - Read Online
P. 74

TIMP‑1 and TIMP‑2 in the progression of cerebral aneurysms. Stroke   Yoneyama  T, Ujiie  H, Kubo  O, Bonin  M, Takakura  K, Hori  T,
              2007;38:2337‑45.                                    Inoue I. Network‑based gene expression analysis of intracranial
           42.  Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT.   aneurysm tissue reveals role of antigen presenting cells. Neuroscience
              Matrix metalloproteinases 2 and 9 work in concert to produce aortic   2008;154:1398‑407.
              aneurysms. J Clin Invest 2002;110:625‑32.       61.  Chalouhi N, Points L, Pierce GL, Ballas Z, Jabbour P, Hasan D.
           43.  Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R, Hashimoto N.   Localized increase of chemokines in the lumen of human cerebral
              Reduced collagen biosynthesis is the hallmark of cerebral aneurysm:   aneurysms. Stroke 2013;44:2594‑7.
              contribution of interleukin‑1beta and nuclear factor‑kappaB.   62.  Kilic T, Sohrabifar M, Kurtkaya O, Yildirim O, Elmaci I, Günel M,
              Arterioscler Thromb Vasc Biol 2009;29:1080‑6.       Pamir MN. Expression of structural proteins and angiogenic factors
           44.  Johnston WF, Salmon M, Su G, Lu G, Stone ML, Zhao Y, Owens GK,   in normal arterial and unruptured and ruptured aneurysm walls.
              Upchurch GR Jr, Ailawadi G. Genetic and pharmacologic disruption   Neurosurgery 2005;57:997‑1007.
              of interleukin‑1ß signaling inhibits experimental aortic aneurysm   63.  Kataoka  K, Taneda  M, Asai  T, Kinoshita  A, Ito  M, Kuroda  R.
              formation. Arterioscler Thromb Vasc Biol 2013;33:294‑304.  Structural fragility and inflammatory response of ruptured cerebral
           45.  Kasama  T, Miwa  Y, Isozaki  T, Odai  T, Adachi  M, Kunkel  SL.   aneurysms. A comparative study between ruptured and unruptured
              Neutrophil‑derived cytokines: potential therapeutic targets in   cerebral aneurysms. Stroke 1999;30:1396‑401.
              inflammation. Curr Drug Targets Inflamm Allergy 2005;4:273‑9.  64.  Frösen J, Piippo  A, Paetau  A, Kangasniemi  M, Niemelä M,
           46.  Zhou HF, Yan H, Cannon JL, Springer LE, Green JM, Pham CT.   Hernesniemi J, Jaaskelainen J. Remodeling of saccular cerebral
              CD43‑mediated IFN‑γ production by CD8+T cells promotes   artery aneurysm wall is associated with rupture: histological analysis
              abdominal aortic aneurysm in mice. J Immunol 2013;190:5078‑85.  of 24 unruptured and 42 ruptured cases. Stroke 2004;35:2287‑93.
           47.  Zheng S, Su A, Sun H, You C. The association between interleukin‑6   65.  Schaub  FJ, Han  DK, Liles  WC, Adams  LD, Coats  SA,
              gene polymorphisms and intracranial aneurysms: a meta‑analysis.   Ramachandran RK, Seifert RA, Schwartz SM, Bowen‑Pope DF.
              Hum Immunol 2013;74:1679‑83.                        Fas/FADD‑mediated activation of a specific program of inflammatory
           48.  Tulamo  R, Frösen J, Junnikkala  S, Paetau  A, Pitkäniemi J,   gene expression in vascular smooth muscle cells.  Nat Med
              Kangasniemi M, Niemela M, Jaaskelainen J, Jokitalo E, Karatas A,   2000;6:790‑6.
              Hernesniemi J, Meri S. Complement activation associates with   66.  Brüne B, von Knethen A, Sandau KB. Nitric oxide (NO): an effector
              saccular cerebral artery aneurysm wall degeneration and rupture.   of apoptosis. Cell Death Differ 1999;6:969‑75.
              Neurosurgery 2006;59:1069‑76.                   67.  Sho E, Sho M, Singh TM, Nanjo H, Komatsu M, Xu C, Masuda H,
           49.  Tulamo R, Frösen J, Junnikkala S, Paetau A, Kangasniemi M,   Zarins CK. Arterial enlargement in response to high flow requires
              Peláez J, Hernesniemi J, Niemela M, Meri S. Complement system   early expression of matrix metalloproteinases to degrade extracellular
              becomes activated by the classical pathway in intracranial aneurysm   matrix. Exp Mol Pathol 2002;73:142‑53.
              walls. Lab Invest 2010;90:168‑79.               68.  Kondo S, Hashimoto N, Kikuchi H, Hazama F, Nagata I, Kataoka H.
           50.  Chalouhi N, Hoh BL, Hasan D. Review of cerebral aneurysm   Cerebral aneurysms arising at nonbranching sites. An experimental
              formation, growth, and rupture. Stroke 2013;44:3613‑22.  Study. Stroke 1997;28:398‑403.
           51.  Kosierkiewicz TA, Factor SM, Dickson DW. Immunocytochemical   69.  Nixon AM, Gunel M, Sumpio BE. The critical role of hemodynamics
              studies of atherosclerotic lesions of cerebral berry aneurysms.   in the development of cerebral vascular disease.  J  Neurosurg
              J Neuropathol Exp Neurol 1994;53:399‑406.           2010;112:1240‑53.
           52.  Nakajima N, Nagahiro S, Sano T, Satomi J, Satoh K. Phenotypic   70.  Turjman AS, Turjman F, Edelman ER. Role of fluid dynamics and
              modulation of smooth muscle cells in human cerebral aneurysmal   inflammation in intracranial aneurysm formation.  Circulation
              walls. Acta Neuropathol 2000;100:475‑80.            2014;129:373‑82.
           53.  Sibon  I, Mercier  N, Darret  D, Lacolley  P, Lamazière JM.   71.  Boussel L, Rayz V, McCulloch C, Martin A, Acevedo‑Bolton G,
              Association between semicarbazide‑sensitive amine oxidase, a   Lawton  M, Higashida  R, Smith  WS, Young  WL, Saloner  D.
              regulator of the glucose transporter, and elastic lamellae thinning   Aneurysm growth occurs at region of low wall shear stress:
              during experimental cerebral aneurysm development: laboratory   patient‑specific correlation of hemodynamics and growth in a
              investigation. J Neurosurg 2008;108:558‑66.         longitudinal study. Stroke 2008;39:2997‑3002.
           54.  Ali MS, Starke RM, Jabbour PM, Tjoumakaris SI, Gonzalez LF,   72.  Kadasi LM, Dent WC, Malek AM. Colocalization of thin‑walled
              Rosenwasser RH, Owens GK, Koch WJ, Greig NH, Dumont AS.   dome regions with low hemodynamic wall shear stress in unruptured
              TNF‑α induces phenotypic modulation in cerebral vascular smooth   cerebral aneurysms. J Neurosurg 2013;119:172‑9.
              muscle cells: implications for cerebral aneurysm pathology. J Cereb   73.  Perktold K, Thurner E, Kenner T. Flow and stress characteristics in
              Blood Flow Metab 2013;33:1564‑73.                   rigid walled and compliant carotid artery bifurcation models. Med
           55.  Mérei FT, Gallyas F. Role of the structural elements of the arterial   Biol Eng Comput 1994;32:19‑26.
              wall in the formation and growth of intracranial saccular aneurysms.   74.  Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS?
              Neurol Res 1980;2:283‑303.                          Complex interactions of hemodynamics with intracranial aneurysm
           56.  Sakaki  T, Kohmura  E, Kishiguchi  T, Yuguchi  T, Yamashita  T,   initiation, growth, and rupture: toward a unifying hypothesis. AJNR
              Hayakawa  T. Loss  and  apoptosis  of  smooth  muscle  cells in   Am J Neuroradiol 2014;35:1254‑62.
              intracranial aneurysms. Studies with in situ DNA end labeling and   75.  Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its
              antibody against single‑stranded DNA.  Acta Neurochir  (Wien)   role in atherosclerosis. JAMA 1999;282:2035‑42.
              1997;139:469‑74.                                76.  Sforza DM, Putman CM, Cebral JR. Hemodynamics of Cerebral
           57.  Guo F, Li Z, Song L, Han T, Feng Q, Guo Y, Xu J, He M, You C.   Aneurysms. Annu Rev Fluid Mech 2009;41:91‑107.
              Increased apoptosis and cysteinyl aspartate specific protease‑3   77.  Kim  SC, Singh  M, Huang  J, Prestigiacomo  CJ, Winfree  CJ,
              gene expression in human intracranial aneurysm. J Clin Neurosci   Solomon RA, Connolly ES Jr. Matrix metalloproteinase‑9 in cerebral
              2007;14:550‑5.                                      aneurysms. Neurosurgery 1997;41:642‑66.
           58.  Ishibashi R, Aoki T, Nishimura M, Hashimoto N, Miyamoto S.   78.  Bruno G, Todor R, Lewis I, Chyatte D. Vascular extracellular matrix
              Contribution of mast cells to cerebral aneurysm formation. Curr   remodeling in cerebral aneurysms. J Neurosurg 1998;89:431‑40.
              Neurovasc Res 2010;7:113‑24.                    79.  Kadirvel  R, Ding  YH, Dai  D, Zakaria  H, Robertson  AM,
           59.  Hasan  D, Chalouhi  N, Jabbour  P, Hashimoto  T. Macrophage   Danielson MA, Lewis DA, Cloft HJ, Kallmes DF. The influence of
              imbalance  (M1 vs. M2) and upregulation of mast cells in wall   hemodynamic forces on biomarkers in the walls of elastase‑induced
              of ruptured human cerebral aneurysms: preliminary results.   aneurysms in rabbits. Neuroradiology 2007;49:1041‑53.
              J Neuroinflammation 2012;9:222.                 80.  Ota R, Kurihara C, Tsou TL, Young WL, Yeghiazarians Y, Chang M,
           60.  Krischek  B,  Kasuya  H,  Tajima  A,  Akagawa  H,  Sasaki  T,   Mobashery  S, Sakamoto  A,  Hashimoto  T. Roles of matrix


            66                                               Neuroimmunol Neuroinflammation | Volume 2 | Issue 2 | April 15, 2015
   69   70   71   72   73   74   75   76   77   78   79