Page 113 - Read Online
P. 113

aneurysm rupture and subarachnoid hemorrhage           among inflammation, hemodynamics and vascular remodeling.
           compared with those who never used aspirin. [50]  These   Neurol Res 2006;28:372‑80.
           findings were reproduced in a retrospective study of   12.  Frösen J, Piippo  A, Paetau  A, Kangasniemi  M, Niemelä M,
                                                                  Hernesniemi J, Jaaskelainen J. Remodeling of saccular cerebral
           747 patients with IAs by Gross et al. [51]  subarachnoid   artery aneurysm wall is associated with rupture: histological analysis
           hemorrhage occurred in 28% of patients with a history   of 24 unruptured and 42 ruptured cases. Stroke 2004;35:2287‑93.
           of aspirin use versus 40% of patients without a history   13.  Rajesh BJ, Sandhyamani S, Bhattacharya RN. Clinico‑pathological
                                                                  study of cerebral aneurysms. Neurol India 2004;52:82‑6.
           of aspirin use. In the previous section, we described   14.  Schlote  W, Gaus  C. Histologic aspects from ruptured and

           an imaging protocol  (ferumoxytol-enhanced MRI)        nonruptured aneurysms. Neurol Res 1994;16:59‑62.
           whereby macrophages in IA walls can be visualized.   15.  Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF,
           In one ferumoxytol-enhanced MRI study, patients        Rosenwasser RH, Koch WJ, Dumont AS. Biology of intracranial
           were imaged pre- and post-daily aspirin therapy (for   aneurysms: role of inflammation.  J  Cereb Blood Flow Metab
                                                                  2012;32:1659‑76.
           several months). Ferumoxytol signal within the IA walls   16.  Turjman AS, Turjman F, Edelman ER. Role of fluid dynamics and
           was decreased in these patients postaspirin therapy,   inflammation in intracranial aneurysm formation.  Circulation
           suggesting IA inflammation may have decreased. [52]    2014;129:373‑82.
                                                              17.  Kosierkiewicz TA, Factor SM, Dickson DW. Immunocytochemical
           CONCLUSION                                             studies of atherosclerotic lesions of cerebral berry aneurysms.
                                                                  J Neuropathol Exp Neurol 1994;53:399‑406.
                                                              18.  Tamura  T, Jamous  MA, Kitazato  KT, Yagi  K, Tada  Y, Uno  M,
           Inflammation has emerged as a probable key mediator of   Nagahiro  S.  Endothelial  damage  due  to  impaired  nitric  oxide
           both aneurysmogenesis and aneurysmal destabilization   bioavailability triggers cerebral aneurysm formation in female rats.
           and rupture. The inflammatory cascade is likely        J Hypertens 2009;27:1284‑92.
           interrelated with mechanical flow-induced vascular   19.  Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia‑Cardeña
                                                                  G. Endothelial dysfunction, hemodynamic forces, and atherogenesis.
           dysfunction. Further studies will, hopefully, further   Ann N Y Acad Sci 2000;902:230‑9.
           define these pathways, aid in our prediction of the   20.  Wang Z, Kolega J, Hoi Y, Gao L, Swartz DD, Levy EI, Mocco J,
           natural history of an IA in a patient-specific manner,   Meng  H. Molecular alterations associated with aneurysmal
           and identify novel pharmacologic targets to prevent    remodeling are localized in the high hemodynamic stress region of
                                                                  a created carotid bifurcation. Neurosurgery 2009;65:169‑77.
           aneurysm growth and rupture.                       21.  Kilic T, Sohrabifar M, Kurtkaya O, Yildirim O, Elmaci I, Günel M,
                                                                  Pamir MN. Expression of structural proteins and angiogenic factors
           REFERENCES                                             in normal arterial and unruptured and ruptured aneurysm walls.
                                                                  Neurosurgery 2005;57:997‑1007.
           1.   Bederson JB, Awad IA, Wiebers DO, Piepgras D, Haley EC Jr,   22.  Aoki T, Kataoka H, Ishibashi R, Nozaki K, Egashira K, Hashimoto N.
              Brott T, Hademenos G, Chyatte D, Rosenwasser R, Caroselli C.   Impact of monocyte chemoattractant protein‑1 deficiency on
              Recommendations for the management of patients with unruptured   cerebral aneurysm formation. Stroke 2009;40:942‑51.
              intracranial aneurysms: a Statement for healthcare professionals   23.  Chyatte  D, Bruno  G, Desai  S, Todor  DR. Inflammation and
              from the Stroke Council of the American Heart Association. Stroke   intracranial aneurysms. Neurosurgery 1999;45:1137‑46.
              2000;31:2742‑50.                                24.  Crompton MR. Mechanism of growth and rupture in cerebral berry
           2.   Rinkel GJ, Djibuti M, Algra A, van Gijn J. Prevalence and risk   aneurysms. Br Med J 1966;1:1138‑42.
              of rupture of intracranial aneurysms: a systematic review. Stroke   25.  Kataoka  K, Taneda  M, Asai  T, Kinoshita  A, Ito  M, Kuroda  R.
              1998;29:251‑6.                                      Structural fragility and inflammatory response of ruptured cerebral
           3.   Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr,   aneurysms. A comparative study between ruptured and unruptured
              Piepgras DG, Forbes GS, Thielen K, Nichols D, O’Fallon WM,   cerebral aneurysms. Stroke 1999;30:1396‑401.
              Peacock  J,  Jaeger  L,  Kassell  NF,  Kongable‑Beckman  GL,   26.  Frösen J, Piippo  A, Paetau  A, Kangasniemi  M, Niemelä M,
              Torner JC; International Study of Unruptured Intracranial Aneurysms   Hernesniemi J, Jaaskelainen J. Growth factor receptor expression
              Investigators. Unruptured intracranial aneurysms: natural history,   and remodeling of saccular cerebral artery aneurysm walls:
              clinical outcome, and risks of surgical and endovascular treatment.   implications for biological therapy preventing rupture. Neurosurgery
              Lancet 2003;362:103‑10.                             2006;58:534‑41.
           4.   Heiskanen O, Vilkki J. Intracranial arterial aneurysms in children   27.  Jamous MA, Nagahiro S, Kitazato KT, Tamura T, Aziz HA, Shono M,
              and adolescents. Acta Neurochir (Wien) 1981;59:55‑63.  Satoh K. Endothelial injury and inflammatory response induced by
           5.   Stehbens WE. Etiology of intracranial berry aneurysms. J Neurosurg   hemodynamic changes preceding intracranial aneurysm formation:
              1989;70:823‑31.                                     experimental study in rats. J Neurosurg 2007;107:405‑11.
           6.   Wilkinson IM. The vertebral artery. Extracranial and intracranial   28.  Boyle JJ. Macrophage activation in atherosclerosis: pathogenesis
              structure. Arch Neurol 1972;27:392‑6.               and pharmacology of plaque rupture.  Curr Vasc Pharmacol
           7.   Finlay HM, Whittaker P, Canham PB. Collagen organization in the   2005;3:63‑8.
              branching region of human brain arteries. Stroke 1998;29:1595‑601.  29.  Kanematsu Y, Kanematsu M, Kurihara C, Tada Y, Tsou TL, van
           8.   Meng H, Metaxa E, Gao L, Liaw N, Natarajan SK, Swartz DD,   Rooijen N, Lawton MT, Young WL, Liang EI, Nuki Y, Hashimoto T.
              Siddiqui AH, Kolega J, Mocco J. Progressive aneurysm development   Critical  roles  of  macrophages  in  the  formation  of  intracranial
              following hemodynamic insult. J Neurosurg 2011;114:1095‑103.  aneurysm. Stroke 2011;42:173‑8.
           9.   Aoki T, Nishimura M. The development and the use of experimental   30.  Caird  J, Napoli  C, Taggart  C, Farrell  M, Bouchier‑Hayes  D.
              animal models to study the underlying mechanisms of CA formation.   Matrix  metalloproteinases  2  and  9  in  human  atherosclerotic
              J Biomed Biotechnol 2011;2011:535921.               and  non‑atherosclerotic  cerebral  aneurysms.  Eur  J  Neurol
           10.  Tulamo R, Frösen J, Hernesniemi J, Niemelä M. Inflammatory   2006;13:1098‑105.
              changes in the aneurysm wall: a review.  J  Neurointerv Surg   31.  Aoki  T, Kataoka  H, Morimoto  M, Nozaki  K, Hashimoto  N.
              2010;2:120‑30.                                      Macrophage‑derived matrix metalloproteinase‑2 and ‑9 promote
           11.  Hashimoto T, Meng H, Young WL. Intracranial aneurysms: links   the progression of cerebral aneurysms in rats. Stroke 2007;38:162‑9.


          Neuroimmunol Neuroinflammation | Volume 2 | Issue 2 | April 15, 2015                              105
   108   109   110   111   112   113   114   115   116   117   118