Page 39 - Read Online
P. 39
Page 8 of 8 Magaribuchi et al. Mini-invasive Surg 2024;8:6 https://dx.doi.org/10.20517/2574-1225.2023.81
29. Komai Y, Sakai Y, Gotohda N, Kobayashi T, Kawakami S, Saito N. A novel 3-dimensional image analysis system for case specific
kidney anatomy and surgical simulation to facilitate clampless partial nephrectomy. Urology 2014;83:500-6. DOI PubMed
30. Amparore D, Piramide F, Verri P, et al. New generation of 3D virtual models with perfusional zones: perioperative assistance for the
best pedicle management during robotic partial nephrectomy. Curr Oncol 2023;30:4021-32. DOI PubMed PMC
31. Simpfendörfer T, Gasch C, Hatiboglu G, et al. Intraoperative computed tomography imaging for navigated laparoscopic renal surgery:
first clinical experience. J Endourol 2016;30:1105-11. DOI PubMed
32. Schiavina R, Bianchi L, Chessa F, et al. Augmented reality to guide selective clamping and tumor dissection during robot-assisted
partial nephrectomy: a preliminary experience. Clin Genitourin Cancer 2021;19:e149-55. DOI PubMed
33. Amparore D, Piramide F, Checcucci E, et al. Three-dimensional virtual models of the kidney with colored perfusion regions: a new
algorithm-based tool for optimizing the clamping strategy during robot-assisted partial nephrectomy. Eur Urol 2023;84:418-25. DOI
PubMed
34. Tzelnick S, Rampinelli V, Sahovaler A, et al. Skull-base surgery-a narrative review on current approaches and future developments in
surgical navigation. J Clin Med 2023;12:2706. DOI PubMed PMC
35. Shenaq DS, Matros E. Virtual planning and navigational technology in reconstructive surgery. J Surg Oncol 2018;118:845-52. DOI
PubMed
36. Grauvogel TD, Engelskirchen P, Semper-Hogg W, Grauvogel J, Laszig R. Navigation accuracy after automatic- and hybrid-surface
registration in sinus and skull base surgery. PLoS One 2017;12:e0180975. DOI PubMed PMC
37. Zhang W, Yin D, Chen X, et al. Morphologic change of in vivo porcine liver under 13 mmHg pneumoperitoneum pressure. Surg
Laparosc Endosc Percutan Tech 2021;31:679-84. DOI PubMed
38. Okada T, Kawada K, Sumii A, et al. Stereotactic navigation for rectal surgery: comparison of 3-dimensional C-arm-based registration
to paired-point registration. Dis Colon Rectum 2020;63:693-700. DOI PubMed
39. Chen Y, Li H, Wu D, Bi K, Liu C. Surgical planning and manual image fusion based on 3D model facilitate laparoscopic partial
nephrectomy for intrarenal tumors. World J Urol 2014;32:1493-9. DOI PubMed
40. Amparore D, Pecoraro A, Checcucci E, et al. Three-dimensional virtual models’ assistance during minimally invasive partial
nephrectomy minimizes the impairment of kidney function. Eur Urol Oncol 2022;5:104-8. DOI PubMed
41. Kong SH, Haouchine N, Soares R, et al. Robust augmented reality registration method for localization of solid organs’ tumors using
CT-derived virtual biomechanical model and fluorescent fiducials. Surg Endosc 2017;31:2863-71. DOI PubMed
42. Joeres F, Mielke T, Hansen C. Laparoscopic augmented reality registration for oncological resection site repair. Int J Comput Assist
Radiol Surg 2021;16:1577-86. DOI PubMed PMC
43. Wild E, Teber D, Schmid D, et al. Robust augmented reality guidance with fluorescent markers in laparoscopic surgery. Int J Comput
Assist Radiol Surg 2016;11:899-907. DOI PubMed
44. Kobayashi S, Cho B, Mutaguchi J, et al. Surgical navigation improves renal parenchyma volume preservation in robot-assisted partial
nephrectomy: a propensity score matched comparative analysis. J Urol 2020;204:149-56. DOI PubMed
45. Puerto-Souza GA, Cadeddu JA, Mariottini GL. Toward long-term and accurate augmented-reality for monocular endoscopic videos.
IEEE Trans Biomed Eng 2014;61:2609-20. DOI PubMed
46. Roberts S, Desai A, Checcucci E, et al. “Augmented reality” applications in urology: a systematic review. Minerva Urol Nephrol
2022;74:528-37. DOI PubMed
47. Jia T, Taylor ZA, Chen X. Long term and robust 6DoF motion tracking for highly dynamic stereo endoscopy videos. Comput Med
Imaging Graph 2021;94:101995. DOI PubMed
48. Padovan E, Marullo G, Tanzi L, et al. A deep learning framework for real-time 3D model registration in robot-assisted laparoscopic
surgery. Int J Med Robot 2022;18:e2387. DOI PubMed PMC
49. Su LM, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD. Augmented reality during robot-assisted laparoscopic partial
nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 2009;73:896-900. DOI PubMed
50. Zampokas G, Tsiolis K, Peleka G, Mariolis I, Malasiotis S, Tzovaras D. Real-time 3D reconstruction in minimally invasive surgery
with quasi-dense matching. In:2018 IEEE International Conference on Imaging Systems and Techniques (IST); 2018 Oct 16-18;
Krakow, Poland. IEEE; 2018. pp. 1-6. DOI
51. Zampokas G, Peleka G, Tsiolis K, Topalidou-Kyniazopoulou A, Mariolis I, Tzovaras D. Real-time stereo reconstruction of
intraoperative scene and registration to preoperative 3D models for augmenting surgeons’ view during RAMIS. Med Phys
2022;49:6517-26. DOI PubMed
52. Yip MC, Lowe DG, Salcudean SE, Rohling RN, Nguan CY. Tissue tracking and registration for image-guided surgery. IEEE Trans
Med Imaging 2012;31:2169-82. DOI PubMed
53. Zhang X, Otoo EM, Fan Y, Tao C, Wang T, Rhode K. Autostereoscopic 3D augmented reality navigation for laparoscopic surgery: a
preliminary assessment. IEEE Trans Biomed Eng 2023;70:1413-21. DOI PubMed
54. Kokko MA, Van Citters DW, Seigne JD, Halter RJ. A particle filter approach to dynamic kidney pose estimation in robotic surgical
exposure. Int J Comput Assist Radiol Surg 2022;17:1079-89. DOI PubMed
55. Camara M, Mayer E, Darzi A, Pratt P. Soft tissue deformation for surgical simulation: a position-based dynamics approach. Int J
Comput Assist Radiol Surg 2016;11:919-28. DOI PubMed PMC