Page 113 - Read Online
P. 113
Dewsbury et al. J Transl Genet Genom 2024;8:85-101 https://dx.doi.org/10.20517/jtgg.2023.58 Page 99
62. Sun X, Marks DL, Park WD, et al. Niemann-Pick C variant detection by altered sphingolipid trafficking and correlation with
mutations within a specific domain of NPC1. Am J Hum Genet 2001;68:1361-72. DOI PubMed PMC
2+
63. Lloyd-Evans E, Platt FM. Lysosomal Ca homeostasis: role in pathogenesis of lysosomal storage diseases. Cell Calcium
2011;50:200-5. DOI PubMed
64. Potter GB, Petryniak MA. Neuroimmune mechanisms in Krabbe’s disease. J Neurosci Res 2016;94:1341-8. DOI PubMed PMC
65. Fiorenza MT, Moro E, Erickson RP. The pathogenesis of lysosomal storage disorders: beyond the engorgement of lysosomes to
abnormal development and neuroinflammation. Hum Mol Genet 2018;27:R119-29. DOI PubMed
66. Cougnoux A, Drummond RA, Fellmeth M, et al. Unique molecular signature in mucolipidosis type IV microglia. J Neuroinflamm
2019;16:276. DOI PubMed PMC
67. Schedin S, Sindelar PJ, Pentchev P, Brunk U, Dallner G. Peroxisomal impairment in Niemann-Pick type C disease. J Biol Chem
1997;272:6245-51. DOI PubMed
68. Kennedy BE, LeBlanc VG, Mailman TM, et al. Pre-symptomatic activation of antioxidant responses and alterations in glucose and
pyruvate metabolism in Niemann-Pick type C1-deficient murine brain. PLoS ONE 2013;8:e82685. DOI PubMed PMC
69. Osellame LD, Rahim AA, Hargreaves IP, et al. Mitochondria and quality control defects in amouse model of Gaucher disease-links to
Parkinson’s disease. Cell Metab 2013;17:941-53. DOI PubMed PMC
70. Dasgupta N, Xu YH, Li R, et al. Neuronopathic Gaucher disease: dysregulated mRNAs and miRNAs in brain pathogenesis and
effects of pharmacologic chaperone treatment in a mouse model. Hum Mol Genet 2015;24:7031-48. DOI PubMed PMC
71. Xu YH, Xu K, Sun Y, et al. Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice. Hum Mol Genet
2014;23:3943-57. DOI PubMed PMC
72. Tullo MG, Cerulli Irelli E, Caramia F, et al. The spectrum of neurological and sensory abnormalities in Gaucher disease patients: a
multidisciplinary study (SENOPRO). Int J Mol Sci 2023;24:8844. DOI PubMed PMC
73. Kartha RV, Terluk MR, Brown R, et al. Patients with Gaucher disease display systemic oxidative stress dependent on therapy status.
Mol Genet Metab Rep 2020;25:100667. DOI PubMed PMC
74. Zhang Z, Wang X, Lin Y, Pan D. A multifaceted evaluation of microgliosis and differential cellular dysregulation of mammalian
target of rapamycin signaling in neuronopathic Gaucher disease. Front Mol Neurosci 2022;15:944883. DOI PubMed PMC
75. Yañez MJ, Campos F, Marín T, et al. c-Abl activates RIPK3 signaling in Gaucher disease. Biochim Biophys Acta Mol Basis Dis
2021;1867:166089. DOI
76. Shimizu T, Schutt CR, Izumi Y, et al. Direct activation of microglia by β-glucosylceramide causes phagocytosis of neurons that
exacerbates Gaucher disease. Immunity 2023;56:307-19.e8. DOI
77. Srikanth MP, Feldman RA. Elevated Dkk1 mediates downregulation of the canonical Wnt pathway and lysosomal loss in an iPSC
model of neuronopathic Gaucher disease. Biomolecules 2020;10:1630. DOI PubMed PMC
78. Baden P, Perez MJ, Raji H, et al. Glucocerebrosidase is imported into mitochondria and preserves complex I integrity and energy
metabolism. Nat Commun 2023;14:1930. DOI PubMed PMC
79. Teixeira CA, Miranda CO, Sousa VF, et al. Early axonal loss accompanied by impaired endocytosis, abnormal axonal transport, and
decreased microtubule stability occur in the model of Krabbe’s disease. Neurobiol Dis 2014;66:92-103. DOI PubMed PMC
80. Singh I, Singh AK, Contreras MA. Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected
contributor to neuropathology. J Child Neurol 2009;24:1147-57. DOI PubMed PMC
81. Haq E, Contreras MA, Giri S, Singh I, Singh AK. Dysfunction of peroxisomes in twitcher mice brain: a possible mechanism of
psychosine-induced disease. Biochem Biophys Res Commun 2006;343:229-38. DOI
82. Voccoli V, Tonazzini I, Signore G, Caleo M, Cecchini M. Role of extracellular calcium and mitochondrial oxygen species in
psychosine-induced oligodendrocyte cell death. Cell Death Dis 2014;5:e1529. DOI PubMed PMC
83. Wu L, Liao X, Yang S, Gan S. Krabbe disease associated with mitochondrial dysfunction in a chinese family. Front Neurol
2021;12:750095. DOI PubMed PMC
84. Kreher C, Favret J, Weinstock NI, et al. Neuron-specific ablation of the Krabbe disease gene galactosylceramidase in mice results in
neurodegeneration. PLoS Biol 2022;20:e3001661. DOI PubMed PMC
85. Hatton C, Ghanem SS, Koss DJ, et al; International DLB Genetics Consortium. Prion-like α-synuclein pathology in the brain of
infants with Krabbe disease. Brain 2022;145:1257-63. DOI
86. Karabelas AB, Walkley SU. Altered patterns of evoked synaptic activity in cortical pyramidal neurons in feline ganglioside storage
disease. Brain Res 1985;339:329-36. DOI PubMed
87. Purpura DP, Highstein SM, Karabelas AB, Walkley SU. Intracellular recording and HRP-staining of cortical neurons in feline
ganglioside storage disease. Brain Res 1980;181:446-9. DOI PubMed
88. Utz JR, Crutcher T, Schneider J, Sorgen P, Whitley CB. Biomarkers of central nervous system inflammation in infantile and juvenile
gangliosidoses. Mol Genet Metab 2015;114:274-80. DOI PubMed PMC
89. Sano R, Annunziata I, Patterson A, et al. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER
2+
stress to Ca -dependent mitochondrial apoptosis. Mol Cell 2009;36:500-11. DOI PubMed PMC
90. Takamura A, Higaki K, Kajimaki K, et al. Enhanced autophagy and mitochondrial aberrations in murine G(M1)-gangliosidosis.
Biochem Biophys Res Commun 2008;367:616-22. DOI
91. Liu S, Feng Y, Huang Y, et al. A GM1 gangliosidosis mutant mouse model exhibits activated microglia and disturbed autophagy. Exp
Biol Med 2021;246:1330-41. DOI PubMed PMC