Page 114 - Read Online
P. 114
Page 100 Dewsbury et al. J Transl Genet Genom 2024;8:85-101 https://dx.doi.org/10.20517/jtgg.2023.58
92. Demir SA, Timur ZK, Ateş N, Martínez LA, Seyrantepe V. GM2 ganglioside accumulation causes neuroinflammation and behavioral
alterations in a mouse model of early onset Tay-Sachs disease. J Neuroinflamm 2020;17:277. DOI PubMed PMC
93. Gadoth N. Neuropsychiatry in late onset Tay-Sachs disease. In: Costa LV, Oliveira S, editors. Communicating rare diseases and
disorders in the digital age. Hershey: IGI Global; 2020. pp. 274-91. DOI
-/-
94. Micsenyi MC, Dobrenis K, Stephney G, et al. Neuropathology of the Mcoln1 knockout mouse model of mucolipidosis type IV. J
Neuropathol Exp Neurol 2009;68:125-35. DOI PubMed PMC
95. Jezela-Stanek A, Ciara E, Stepien KM. Neuropathophysiology, genetic profile, and clinical manifestation of mucolipidosis IV-a
review and case series. Int J Mol Sci 2020;21:4564. DOI PubMed PMC
96. Misko A, Wood L, Kiselyov K, Slaugenhaupt S, Grishchuk Y. Progress in elucidating pathophysiology of mucolipidosis IV.
Neurosci Lett 2021;755:135944. DOI PubMed PMC
97. Mepyans M, Andrzejczuk L, Sosa J, et al. Early evidence of delayed oligodendrocyte maturation in the mouse model of
mucolipidosis type IV. Dis Model Mech 2020;13:dmm044230. DOI PubMed PMC
2+
98. Peng W, Wong YC, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial Ca dynamics via lysosomal TRPML1. Proc
Natl Acad Sci USA 2020;117:19266-75. DOI PubMed PMC
99. Nelson MP, Tse TE, O’Quinn DB, et al. Autophagy-lysosome pathway associated neuropathology and axonal degeneration in the
brains of alpha-galactosidase A-deficient mice. Acta Neuropathol Commun 2014;2:1-15. DOI PubMed PMC
100. Groh J, Ribechini E, Stadler D, Schilling T, Lutz MB, Martini R. Sialoadhesin promotes neuroinflammation-related disease
progression in two mouse models of CLN disease. Glia 2016;64:792-809. DOI PubMed
101. Uusi-Rauva K, Blom T, von Schantz-Fant C, Blom T, Jalanko A, Kyttälä A. Induced pluripotent stem cells derived from a CLN5
patient manifest phenotypic characteristics of neuronal ceroid lipofuscinoses. Int J Mol Sci 2017;18:955. DOI PubMed PMC
2+ mnd
102. Kolikova J, Afzalov R, Surin A, Lehesjoki AE, Khiroug L. Deficient mitochondrial Ca buffering in the Cln8 mouse model of
neuronal ceroid lipofuscinosis. Cell Calcium 2011;50:491-501. DOI PubMed
103. Dozières-Puyravel B, Nasser H, Elmaleh-Bergès M, et al. Paediatric-onset neuronal ceroid lipofuscinosis: first symptoms and
presentation at diagnosis. Dev Med Child Neurol 2020;62:528-30. DOI
104. Naseri N, Sharma M, Velinov M. Autosomal dominant neuronal ceroid lipofuscinosis: Clinical features and molecular basis. Clin
Genet 2021;99:111-8. DOI PubMed PMC
105. Lopez-Fabuel I, Garcia-Macia M, Buondelmonte C, et al. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal
ceroid lipofuscinosis. Nat Commun 2022;13:536. DOI PubMed PMC
106. Pesaola F, Quassollo G, Venier AC, De Paul AL, Noher I, Bisbal M. The neuronal ceroid lipofuscinosis-related protein CLN8
regulates endo-lysosomal dynamics and dendritic morphology. Biol Cell 2021;113:419-37. DOI PubMed
107. Wang Y, Wang H, Wang C. Lysosomal dysfunction, autophagic defects, and CLN5 accumulation underlie the pathogenesis of
KCTD7-mutated neuronal ceroid lipofuscinoses. Autophagy 2023;19:1876-8. DOI PubMed PMC
108. Huang Q, Zhang YF, Li LJ, et al. Adult-onset neuronal ceroid lipofuscinosis with a novel DNAJC5 mutation exhibits aberrant protein
palmitoylation. Front Aging Neurosci 2022;14:829573. DOI PubMed PMC
109. Lim JA, Li L, Kakhlon O, Myerowitz R, Raben N. Defects in calcium homeostasis and mitochondria can be reversed in Pompe
disease. Autophagy 2015;11:385-402. DOI PubMed PMC
110. van den Dorpel JJA, van der Vlugt WMC, Dremmen MHG, et al. Is the brain involved in patients with late-onset Pompe disease? J
Inherit Metab Dis 2022;45:493-501. DOI PubMed PMC
111. Niemann S, Beck M, Seidel G, Spranger J, Vieregge P. Neurology of adult alpha-mannosidosis. J Neurol Neurosurg Psychiatry
1996;61:116-7. DOI PubMed PMC
112. Zoons E, de Koning TJ, Abeling NG, Tijssen MA. Neurodegeneration with brain iron accumulation on MRI: an adult case of α-
mannosidosis. JIMD Rep 2012;4:99-102. DOI PubMed PMC
113. Brantova O, Asfaw B, Sladkova J, et al. Ultrastructural and functional abnormalities of mitochondria in cultivated fibroblasts from α-
mannosidosis patients. Biologia 2009;64:394-401. DOI
114. Ghani S, Burney S, Ul Hussain H, Abdul Wahid M, Mumtaz H. Can velmanase alfa be the next widespread potential therapy for
alpha-mannosidosis? Int J Surg 2023;109:2882-5. DOI PubMed PMC
115. Ceccarini MR, Codini M, Conte C, et al. Alpha-mannosidosis: therapeutic strategies. Int J Mol Sci 2018;19:1500. DOI PubMed
PMC
116. Walkley SU, Thrall MA, Dobrenis K, et al. Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous
system in a lysosomal storage disease. Proc Natl Acad Sci USA 1994;91:2970-4. DOI PubMed PMC
117. Grewal SS, Shapiro EG, Krivit W, et al. Effective treatment of alpha-mannosidosis by allogeneic hematopoietic stem cell
transplantation. J Pediatr 2004;144:569-73. DOI
118. Mynarek M, Tolar J, Albert MH, et al. Allogeneic hematopoietic SCT for alpha-mannosidosis: an analysis of 17 patients. Bone
Marrow Transplant 2012;47:352-9. DOI
119. Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe's disease. N Engl
J Med 2005;352:2069-81. DOI
120. Borgwardt L, Guffon N, Amraoui Y, et al. Health related quality of life, disability, and pain in alpha mannosidosis: long-term data of
enzyme replacement therapy with velmanase alfa (human recombinant alpha mannosidase). J Inborn Errors Metab Screen
2018;6:232640981879685. DOI