Page 112 - Read Online
P. 112
Page 98 Dewsbury et al. J Transl Genet Genom 2024;8:85-101 https://dx.doi.org/10.20517/jtgg.2023.58
33. Zalfa C, Verpelli C, D’Avanzo F, et al. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease. Cell
Death Dis 2016;7:e2331. DOI PubMed PMC
34. Viana GM, Priestman DA, Platt FMK, Tomatsu S, Pshezhetsky AV. Brain pathology in mucopolysaccharidoses (MPS) patients with
neurological forms. J Clin Med 2020;9:396. DOI PubMed PMC
35. Heon-Roberts R, Nguyen ALA, Pshezhetsky AV. Molecular bases of neurodegeneration and cognitive decline, the major burden of
Sanfilippo disease. J Clin Med 2020;9:344. DOI PubMed PMC
36. Pereira VG, Martins AM, Micheletti C, D’Almeida V. Mutational and oxidative stress analysis in patients with
mucopolysaccharidosis type I undergoing enzyme replacement therapy. Clin Chim Acta 2008;387:75-9. DOI PubMed
37. Donida B, Marchetti DP, Biancini GB, et al. Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated
with enzyme replacement therapy. Biochim Biophys Acta 2015;1852:1012-9. DOI
38. Ayodele O, Müller K, Setayeshgar S, Alexanderian D, Yee KS. Clinical characteristics and healthcare resource utilization for patients
with mucopolysaccharidosis II (MPS II) in the United States: a retrospective chart review. J Health Econ Outcomes Res 2022;9:117-
27. DOI PubMed PMC
39. Filippon L, Vanzin CS, Biancini GB, et al. Oxidative stress in patients with mucopolysaccharidosis type II before and during enzyme
replacement therapy. Mol Genet Metab 2011;103:121-7. DOI
40. Bhalla A, Ravi R, Fang M, et al. Characterization of fluid biomarkers reveals lysosome dysfunction and neurodegeneration in
neuronopathic MPS II patients. Int J Mol Sci 2020;21:5188. DOI PubMed PMC
41. Azambuja AS, Pimentel-Vera LN, Gonzalez EA, et al. Evidence for inflammasome activation in the brain of mucopolysaccharidosis
type II mice. Metab Brain Dis 2020;35:1231-6. DOI
42. Manzoli R. Identification and characterization of signaling and axonal migration defects in the MPS II zebrafish model. Res Padua
Arch 2023;8. Available from: https://hdl.handle.net/11577/3478864 [Last accessed on 14 Mar 2024].
43. Corrêa T, Poswar F, Santos-Rebouças CB. Convergent molecular mechanisms underlying cognitive impairment in
mucopolysaccharidosis type II. Metab Brain Dis 2022;37:2089-102. DOI PubMed
44. Pshezhetsky AV. Crosstalk between 2 organelles: lysosomal storage of heparin sulfate causes mitochondrial defects and neuronal
death in mucopolysaccharidosis III type c. Rare Dis 2015;3:e1049793. DOI PubMed PMC
45. Montero R, Yubero D, Salgado MC, et al. Plasma coenzyme Q10 status is impaired in selected genetic conditions. Sci Rep
2019;9:793. DOI PubMed PMC
46. Kong W, Meng Y, Zou L, Yang G, Wang J, Shi X. Mucopolysaccharidosis III in Mainland China: natural history, clinical and
molecular characteristics of 34 patients. J Pediatr Endocrinol Metab 2020;33:793-802. DOI
47. Gerken E, Ahmad S, Rattan L, Hemsley K, Barthelson K, Lardelli M. Zebrafish models of Mucopolysaccharidosis types IIIA, B, & C
show hyperactivity and changes in oligodendrocyte state. bioRxiv 2023:8. DOI
48. Villani GR, Di Domenico C, Musella A, Cecere F, Di Napoli D, Di Natale P. Mucopolysaccharidosis IIIB: oxidative damage and
cytotoxic cell involvement in the neuronal pathogenesis. Brain Res 2009;1279:99-108. DOI PubMed
49. Vitry S, Bruyère J, Hocquemiller M, et al. Storage vesicles in neurons are related to Golgi complex alterations in
mucopolysaccharidosis IIIB. Am J Pathol 2010;177:2984-99. DOI PubMed PMC
50. Egeland MT, Tarczyluk-Wells MM, Asmar MM, et al. Central nervous system pathology in preclinical MPS IIIB dogs reveals
progressive changes in clinically relevant brain regions. Sci Rep 2020;10:20365. DOI PubMed PMC
51. Harm TA, Hostetter SJ, Nenninger AS, Valentine BN, Ellinwood NM, Smith JD. Temporospatial development of neuropathologic
findings in a canine model of mucopolysaccharidosis IIIB. Vet Pathol 2021;58:205-22. DOI PubMed PMC
52. Pará C, Bose P, Bruno L, et al. Early defects in mucopolysaccharidosis type IIIC disrupt excitatory synaptic transmission. JCI Insight
2021;6:e142073. DOI PubMed PMC
53. Martins C, Hůlková H, Dridi L, et al. Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III
type C mouse model. Brain 2015;138:336-55. DOI PubMed PMC
54. Borges MS, Aquino MB, Vagnini L, Carneiro ZA, Fonseca JH, Lourenco CM. Lysosomal acid lipase deficiency across ages:
unraveling the clinical spectrum of an under-recognized genetic disorder. Mol Genet Metab 2020;129:S32-3. DOI
55. Pablo-Latorre R, Saide A, Polishhuck EV, Nusco E, Fraldi A, Ballabio A. Impaired parkin-mediated mitochondrial targeting to
autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases. Hum Mol Genet 2012;21:1770-81. DOI
PubMed PMC
56. Settembre C, Fraldi A, Jahreiss L, et al. A block of autophagy in lysosomal storage disorders. Hum Mol Genet 2008;17:119-29. DOI
57. Zhong XZ, Sun X, Cao Q, Dong G, Schiffmann R, Dong XP. BK channel agonist represents a potential therapeutic approach for
lysosomal storage diseases. Sci Rep 2016;6:33684. DOI PubMed PMC
58. Ginzburg L, Futerman AH. Defective calcium homeostasis in the cerebellum in a mouse model of Niemann-Pick A disease. J
Neurochem 2005;95:1619-28. DOI
59. Pressey SN, Smith DA, Wong AM, Platt FM, Cooper JD. Early glial activation, synaptic changes and axonal pathology in the
thalamocortical system of Niemann-Pick type C1 mice. Neurobiol Dis 2012;45:1086-100. DOI PubMed PMC
60. Sarkar S, Carroll B, Buganim Y, et al. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep
2013;5:1302-15. DOI PubMed PMC
61. Shen D, Wang X, Li X, et al. Lipid storage disorders block lysosomal trafficking by inhibiting TRP channel and calcium release. Nat
Commun 2012;3:731-51. DOI PubMed PMC