Page 154 - Read Online
P. 154

Page 444                                    Gropman et al. J Transl Genet Genom 2020;4:429-45  I  http://dx.doi.org/10.20517/jtgg.2020.09

               38.  Harris RA, Joshi M, Jeoung NH, Obayashi M. Overview of the molecular and biochemical basis of branched-chain amino acid
                   catabolism. J Nutr 2005;135:1527S-30.
               39.  Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM. MR diffusion imaging and MR spectroscopy of maple syrup urine
                   disease during acute metabolic decompensation. Neuroradiology 2003;45:393-9.
               40.  Ha JS, Kim TK, Eun BL, et al. Maple syrup urine disease encephalopathy: a follow-up study in the acute stage using diffusion-weighted
                   MRI. Pediatr Radiol 2004;34:163-6.
               41.  Righini A, Ramenghi LA, Parini R, Triulzi F, Mosca F. Water apparent diffusion coefficient and T2 changes in the acute stage of maple
                   syrup urine disease: evidence of intramyelinic and vasogenic-interstitial edema. J Neuroimaging 2003;13:162-5.
               42.  Parmar H, Sitoh YY, Ho L. Maple syrup urine disease: diffusion-weighted and diffusion-tensor magnetic resonance imaging findings. J
                   Comput Assist Tomogr 2004;28:93-7.
               43.  Gao Y, Guan WY, Wang J, Zhang YZ, Li YH, Han LS. Fractional anisotropy for assessment of white matter tracts injury in methylmalonic
                   acidemia. Chin Med J (Engl) 2009;122:945-9.
               44.  Lau MW, Lee RW, Miyamoto R, et al. Role of diffusion tensor imaging in prognostication and treatment monitoring in niemann-pick
                   disease type C1. Diseases 2016;4:29.
               45.  Poretti A, Meoded A, Fatemi A. Diffusion tensor imaging: a biomarker of outcome in Krabbe’s disease. J Neurosci Res 2016;94:1108-15.
               46.  Gropman AL, Gertz B, Shattuck K, et al. Diffusion tensor imaging detects areas of abnormal white matter microstructure in patients with
                   partial ornithine transcarbamylase deficiency. AJNR Am J Neuroradiol 2010;31:1719-23.
               47.  Miscevic F, Foong J, Schmitt B, Blaser S, Brudno M, Schulze A. An MRspec database query and visualization engine with applications
                   as a clinical diagnostic and research tool. Mol Genet Metab 2016;119:300-6.
               48.  Gropman AL. Expanding the diagnostic and research toolbox for inborn errors of metabolism: the role of magnetic resonance
                   spectroscopy. Mol Genet Metab 2005;86:2-9.
               49.  Ross BD, Blüml S. New aspects of brain physiology. NMR Biomed 1996;9:279-96.
               50.  Mano T, Ono J, Kaminaga T, et al. Proton MR spectroscopy of Sjögren-Larsson’s syndrome. AJNR 1999;20:1671-3.
               51.  Boy N, Garbade SF, Heringer J, Seitz A, Kölker S, Harting I. Patterns, evolution, and severity of striatal injury in insidious- vs acute-onset
                   glutaric aciduria type 1. J Inherit Metab Dis 2019;42:117-27.
               52.  Heindel W, Kugel H, Wendel U, Roth B, Benz-Bohm G. Proton magnetic resonance spectroscopy reflects metabolic decompensation in
                   maple syrup urine disease. Pediatr Radiol 1995;25:296-9.
               53.  Sato T, Muroya K, Hanakawa J, et al. Neonatal case of classic maple syrup urine disease: usefulness of (1) H-MRS in early diagnosis.
                   Pediatr Int 2014;56:112-5.
               54.  Cecil KM, Kos RS. Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders. Top Magn
                   Reson Imaging 2006;17:275-93.
               55.  Takanashi J, Sugita K, Osaka H, Ishii M, Niimi H. Proton MR spectroscopy in Pelizaeus Merzbacher disease. AJNR 1997;18:533-5.
               56.  Pizzini F, Fatemi AS, Barker PB, et al. Proton MR spectroscopic imaging in Pelizaeus Merzbacher disease. AJNR 2003;24:1683-9.
               57.  Sener R. Pelizaeus-Merzbacher disease: diffusion MR imaging and proton MR spectroscopy findings. J Neuroradiol 2004;31:138-41.
               58.  Manoli I, Sloan JL, Venditti CP. Isolated methylmalonic acidemia. 2005 Aug 16 [updated 2016 Dec 1]. In: Adam MP, Ardinger HH,
                   Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews  [Internet]. Seattle (WA): University of Washington;
                                                                        ®
                   1993-2020.
               59.  de Sousa C, Piesowicz AT, Brett EM, Leonard JV. Focal changes in the globi pallidi associated with neurological dysfunction in
                   methylmalonic acidaemia. Neuropediatrics 1989;20:199-201.
               60.  Baker EH, Sloan JL, Hauser NS, et al. MRI characteristics of globus pallidus infarcts in isolated methylmalonic acidemia. AJNR Am J
                   Neuroradiol 2015;36:194-201.
               61.  Takeuchi M, Harada M, Matsuzaki K, Hisaoka S, Nishitani H, Mori K. Magnetic resonance imaging and spectroscopy in a patient with
                   treated methylmalonic acidemia. J Comput Assist Tomogr 2003;27:547-51.
               62.  Byron O, Lindsay JG. The pyruvate dehydrogenase complex and related assemblies in health and disease. In: Harris JR, Marles-wright J,
                   editors. Macromolecular protein complexes. Cham: Springer International Publishing; 2017. pp. 523-50.
               63.  Sofou K, Steneryd K, Wiklund LM, Tulinius M, Darin N. MRI of the brain in childhood-onset mitochondrial disorders with central
                   nervous system involvement. Mitochondrion 2013;13:364-71.
               64.  Rubio-Gozalbo M, Heerschap A, Trijbels J, Meirleir L, Thijssen H, Smeitink J. Proton MR spectroscopy in a child with pyruvate
                   dehydrogenase complex deficiency. Magnetic Resonance Imaging 1999;17:939-44.
               65.  Stence NV, Fenton LZ, Levek C, et al. Brain imaging in classic nonketotic hyperglycinemia: quantitative analysis and relation to
                   phenotype. J Inherit Metab Dis 2019;42:438-50.
               66.  Dobyns WB. Agenesis of the corpus callosum and gyral malformations are frequent manifestations of nonketotic hyperglycinemia.
                   Neurology 1989;39:817-20.
               67.  Takanashi J, Kurihara A, Tomita M, et al. Distinctly abnormal brain metabolism in late-onset ornithine transcarbamylase deficiency.
                   Neurology 2002;59:210-4.
                                                                    1
               68.  Gropman AL, Fricke ST, Seltzer RR, et al; Urea Cycle Disorders Consortium.  H MRS identifies symptomatic and asymptomatic subjects
                   with partial ornithine transcarbamylase deficiency. Mol Genet Metab 2008;95:21-30.
                                                                  1
               69.  Gropman AL, Seltzer RR, Yudkoff M, Sawyer A, VanMeter J, Fricke ST.  H MRS allows brain phenotype differentiation in sisters with
                   late onset ornithine transcarbamylase deficiency (OTCD) and discordant clinical presentations. Mol Genet Metab 2008;94:52-60.
               70.  Bailey DL, Townsend DW, Valk PE, Maisey MN. Positron emission tomography: basic sciences. Secaucus, NJ: Springer-Verlag; 2005.
   149   150   151   152   153   154   155   156   157   158   159