Page 155 - Read Online
P. 155

Gropman et al. J Transl Genet Genom 2020;4:429-45  I  http://dx.doi.org/10.20517/jtgg.2020.09                                  Page 445

               71.  Miller JJ, Kanack AJ, Dahms NM. Progress in the understanding and treatment of Fabry disease. Biochim Biophys Acta Gen Subj
                   2020;1864:129437.
               72.  Feldt-Rasmussen U. Fabry disease and early stroke. Stroke Res Treat 2011;2011:615218.
               73.  Mitsias P, Levine SR. Cerebrovascular complications of Fabry’s disease. Ann Neurol 1996;40:8-17.
               74.  Crutchfield KE, Patronas NJ, Dambrosia JM, et al. Quantitative analysis of cerebral vasculopathy in patients with Fabry disease.
                   Neurology 1998;50:1746-9.
               75.  Moore DF, Kaneski CR, Askari H, Schiffmann R. The cerebral vasculopathy of Fabry disease. J Neurol Sci 2007;257:258-63.
               76.  DeGraba T, Azhar S, gnat-George F, et al. Profile of endothelial and leukocyte activation in Fabry patients. Ann Neurol 2000;47:229-33.
               77.  Schiffmann R. Fabry disease. Pharmacol Ther 2009;122:65-77.
               78.  Korsholm K, Feldt-Rasmussen U, Granqvist H, et al. Positron emission tomography and magnetic resonance imaging of the brain in fabry
                   disease: a nationwide, long-time, prospective follow-up. PLoS One 2015;10:e0143940.
               79.  Ficicioglu C, Dubroff JG, Thomas N, et al. A pilot study of fluorodeoxyglucose positron emission tomography findings in patients with
                   phenylketonuria before and during sapropterin supplementation. J Clin Neurol 2013;9:151-6.
               80.  Friedland RP, Iadecola C. Roy and Sherrington (1890): a centennial reexamination of “On the regulation of the blood-supply of the
                   brain”. Neurology 1991;41:10-4.
               81.  Logothetis NK. What we can do and what we cannot do with fMRI. Nature 2008;453:869-78.
               82.  Mazoyer B, Zago L, Mellet E, et al. Cortical networks for working memory and executive functions sustain the conscious resting state in
                   man. Brain Res Bull 2001;54:287-98.
               83.  Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. Neuroimage 2007;37:1083-90; discussion
                   1097-9.
               84.  Konishi M, McLaren DG, Engen H, Smallwood J. Shaped by the past: the default mode network supports cognition that is independent of
                   immediate perceptual input. PLoS One 2015;10:e0132209.
               85.  Andrews-Hanna JR. The brain’s default network and its adaptive role in internal mentation. Neuroscientist 2012;18:251-70.
               86.  Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad
                   Sci 2008;1124:1-38.
               87.  Christ SE, Moffitt AJ, Peck D. Disruption of prefrontal function and connectivity in individuals with phenylketonuria. Mol Genet Metab
                   2010;99 Suppl 1:S33-40.
               88.  Christ SE, Moffitt AJ, Peck D, White DA, Hilgard J. Decreased functional brain connectivity in individuals with early-treated
                   phenylketonuria: evidence from resting state fMRI. J Inherit Metab Dis 2012;35:807-16.
               89.  van Erven B, Jansma BM, Rubio-Gozalbo ME, Timmers I. Exploration of the brain in rest: resting-state functional MRI abnormalities in
                   patients with classic galactosemia. Sci Rep 2017;7:9095.
               90.  Pacheco-Colón I, Washington SD, Sprouse C, Helman G, Gropman AL, VanMeter JW. Reduced functional connectivity of default mode
                   and set-maintenance networks in ornithine transcarbamylase deficiency. PLoS One 2015;10:e0129595.
               91.  Gropman AL, Shattuck K, Prust MJ, et al. Altered neural activation in ornithine transcarbamylase deficiency during executive cognition:
                   an fMRI study. Hum Brain Mapp 2013;34:753-61.
               92.  Lloyd-Fox S, Blasi A, Elwell CE. Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy.
                   Neurosci Biobehav Rev 2010;34:269-84.
               93.  Wilcox T, Biondi M. fNIRS in the developmental sciences. Wiley Interdiscip Rev Cogn Sci 2015;6:263-83.
               94.  Aslin RN, Mehler J. Near-infrared spectroscopy for functional studies of brain activity in human infants: promise, prospects, and
                   challenges. J Biomed Opt 2005;10:11009.
               95.  Raman S, Chentouf L, DeVile C, Peters MJ, Rahman S. Near infrared spectroscopy with a vascular occlusion test as a biomarker in
                   children with mitochondrial and other neuro-genetic disorders. PLoS One 2018;13:e0199756.
               96.  Anderson A, Gropman A, Le Mons C, Stratakis C, Gandjbakhche A. Evaluation of neurocognitive function of prefrontal cortex in
                   ornithine transcarbamylase deficiency. Mol Genet Metab 2020;129:207-12.
               97.  Davison JE, Davies NP, Wilson M, et al. MR spectroscopy-based brain metabolite profiling in propionic acidaemia: metabolic changes in
                   the basal ganglia during acute decompensation and effect of liver transplantation. Orphanet J Rare Dis 2011;6:19.
               98.  Diamond A. Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry.
                   Principles of frontal lobe function 2002: 466-503. Available from: https://psycnet.apa.org/record/2002-17547-028. [Last accessed on 4
                   Nov 2020]
   150   151   152   153   154   155   156   157   158   159   160