Page 153 - Read Online
P. 153
Gropman et al. J Transl Genet Genom 2020;4:429-45 I http://dx.doi.org/10.20517/jtgg.2020.09 Page 443
phenylketonuria (PKU): a comprehensive picture across domains. Neuropsychology 2017;31:255-67.
7. Hofman DL, Champ CL, Lawton CL, Henderson M, Dye L. A systematic review of cognitive functioning in early treated adults with
phenylketonuria. Orphanet J Rare Dis 2018;13:150.
8. Smith E, Anderson A, Thurm A, et al. Prefrontal activation during executive tasks emerges over early childhood: evidence from functional
near infrared spectroscopy. Dev Neuropsychol 2017;42:253-64.
9. Kimura S, Hara M, Nezu A, Osaka H, Yamazaki S, Saitoh K. Two cases of glutaric aciduria type 1: Clinical and neuropathological
findings. J Neurol Sci 1994;123:38-43.
10. Gropman AL. The neurological presentations of childhood and adult mitochondrial disease: established syndromes and phenotypic
variations. Mitochondrion 2004;4:503-20.
11. Harting I, Seitz A, Geb S, et al. Looking beyond the basal ganglia: the spectrum of MRI changes in methylmalonic acidaemia. J Inherit
Metab Dis 2008;31:368-78.
12. Hartwig V, Carbonaro N, Tognetti A, Vanello N. Systematic review of fMRI compatible devices: design and testing criteria. Ann Biomed
Eng 2017;45:1819-35.
13. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259-67.
14. Bendlin BB, Ries ML, Lazar M, et al. Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and
volumetric imaging. Neuroimage 2008;42:503-14.
15. Hahn LA, Rose J. Working memory as an indicator for comparative cognition - detecting qualitative and quantitative differences. Front
Psychol 2020;11:1954.
16. Doyle CM, Channon S, Orlowska D, Lee PJ. The neuropsychological profile of galactosaemia. J Inherit Metab Dis 2010;33:603-9.
17. Ahtam B, Waisbren SE, Anastasoaie V, et al. Identification of neuronal structures and pathways corresponding to clinical functioning in
galactosemia. J Inherit Metab Dis 2020; doi: 10.1002/jimd.12279.
18. Antenor-Dorsey JA, Hershey T, Rutlin J, et al. White matter integrity and executive abilities in individuals with phenylketonuria. Mol
Genet Metab 2013;109:125-31.
19. Christ SE, Huijbregts SC, de Sonneville LM, White DA. Executive function in early-treated phenylketonuria: profile and underlying
mechanisms. Mol Genet Metab 2010;99 Suppl 1:S22-32.
20. Yu Q, Peng Y, Kang H, et al. Differential white matter maturation from birth to 8 years of age. Cereb Cortex 2020;30:2673-89.
21. Kono K, Okano Y, Nakayama K, et al. Diffusion-weighted MR imaging in patients with phenylketonuria: relationship between serum
phenylalanine levels and ADC values in cerebral white matter. Radiology 2005;236:630-6.
22. Peng H, Peck D, White DA, Christ SE. Tract-based evaluation of white matter damage in individuals with early-treated phenylketonuria.
J Inherit Metab Dis 2014;37:237-43.
23. Vermathen P, Robert-Tissot L, Pietz J, Lutz T, Boesch C, Kreis R. Characterization of white matter alterations in phenylketonuria by
magnetic resonance relaxometry and diffusion tensor imaging. Magn Reson Med 2007;58:1145-56.
24. White DA, Antenor-Dorsey JA, Grange DK, et al. White matter integrity and executive abilities following treatment with
tetrahydrobiopterin (BH4) in individuals with phenylketonuria. Mol Genet Metab 2013;110:213-7.
25. White DA, Connor LT, Nardos B, et al. Age-related decline in the microstructural integrity of white matter in children with early- and
continuously-treated PKU: a DTI study of the corpus callosum. Mol Genet Metab 2010;99 Suppl 1:S41-6.
26. Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A. Are neuropsychological impairments in children with early-
treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol 2007;32:645-68.
27. Hood A, Rutlin J, Shimony JS, Grange DK, White DA. Brain white matter integrity mediates the relationship between phenylalanine
control and executive abilities in children with phenylketonuria. In: Morava E, Baumgartner M, Patterson M, Rahman S, Zschocke J,
Peters V, editors. JIMD Reports, Volume 33. Berlin: Springer Berlin Heidelberg; 2017. pp. 41-7.
28. Hood A, Antenor-Dorsey JA, Rutlin J, et al. Prolonged exposure to high and variable phenylalanine levels over the lifetime predicts brain
white matter integrity in children with phenylketonuria. Mol Genet Metab 2015;114:19-24.
29. Leuzzi V, Tosetti M, Montanaro D, et al. The pathogenesis of the white matter abnormalities in phenylketonuria. A multimodal 3.0 tesla
1
MRI and magnetic resonance spectroscopy ( H MRS) study. J Inherit Metab Dis 2007;30:209-16.
30. Leuzzi V, Gualdi GF, Fabbrizi F, et al. Neuroradiological (MRI) abnormalities in phenylketonuric subjects: clinical and biochemical
correlations. Neuropediatrics 1993;24:302-6.
31. Manara R, Burlina AP, Citton V, et al. Brain MRI diffusion-weighted imaging in patients with classical phenylketonuria. Neuroradiology
2009;51:803-12.
32. Rupp A, Kreis R, Zschocke J, et al. Variability of blood-brain ratios of phenylalanine in typical patients with phenylketonuria. J Cereb
Blood Flow Metab 2001;21:276-84.
33. Scarabino T, Popolizio T, Tosetti M, et al. Phenylketonuria: white-matter changes assessed by 3.0-T magnetic resonance (MR) imaging,
MR spectroscopy and MR diffusion. Radiol Med 2009;114:461-74.
34. Sundermann B, Garde S, Dehghan Nayyeri M, et al. Approaching altered inhibitory control in phenylketonuria: a functional MRI study
with a Go-NoGo task in young female adults. Eur J Neurosci 2020;52:3951-62.
35. Nardecchia F, Manti F, Chiarotti F, Carducci C, Carducci C, Leuzzi V. Neurocognitive and neuroimaging outcome of early treated young
adult PKU patients: a longitudinal study. Mol Genet Metab 2015;115:84-90.
36. Ding XQ, Fiehler J, Kohlschütter B, et al. MRI abnormalities in normal-appearing brain tissue of treated adult PKU patients. J Magn
Reson Imaging 2008;27:998-1004.
37. Schadewaldt P, Wendel U. Metabolism of branched-chain amino acids in maple syrup urine disease. Eur J Pediatr 1997;156 Suppl 1:S62-6.