Page 77 - Read Online
P. 77

Gao et al. J Mater Inf 2023;3:6  https://dx.doi.org/10.20517/jmi.2023.03        Page 15 of 15

                   for residual strain removal. Mater Des 2019;182:108005.  DOI
               60.      Lorusso M, Trevisan F, Calignano F, Lombardi M, Manfredi D. A357 alloy by LPBF for industry applications. Materials
                   2020;13:1488.  DOI  PubMed  PMC
               61.      Read N, Wang W, Essa K, Attallah MM. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties
                   development. Mater Des 2015;65:417-24.  DOI
               62.      Bagherifard S, Beretta N, Monti S, Riccio M, Bandini M, Guagliano M. On the fatigue strength enhancement of additive manufactured
                   AlSi10Mg parts by mechanical and thermal post-processing. Mater Des 2018;145:28-41.  DOI
               63.      Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution,
                   mechanical properties and fracture mechanism. Mater Sci Eng A 2016;663:116-25.  DOI
               64.      Tradowsky U, White J, Ward R, Read N, Reimers W, Attallah M. Selective laser melting of AlSi10Mg: influence of post-processing
                   on the microstructural and tensile properties development. Mater Des 2016;105:212-22.  DOI
               65.      Hitzler L, Janousch C, Schanz J, et al. Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater
                   Process Technol 2017;243:48-61.  DOI
               66.      Casati R, Hamidi Nasab M, Coduri M, Tirelli V, Vedani M. Effects of platform pre-heating and thermal-treatment strategies on
                   properties of AlSi10Mg alloy processed by selective laser melting. Metals 2018;8:954.  DOI
               67.      Kan WH, Nadot Y, Foley M, Ridosz L, Proust G, Cairney JM. Factors that affect the properties of additively-manufactured AlSi10Mg:
                   porosity versus microstructure. Addit Manuf 2019;29:100805.  DOI
               68.      Xiong Z, Liu S, Li S, Shi Y, Yang Y, Misra R. Role of melt pool boundary condition in determining the mechanical properties of
                   selective laser melting AlSi10Mg alloy. Mater Sci Eng A 2019;740-741:148-56.  DOI
               69.      Padovano E, Badini C, Pantarelli A, Gili F, D’aiuto F. A comparative study of the effects of thermal treatments on AlSi10Mg produced
                   by laser powder bed fusion. J Alloys Compd 2020;831:154822.  DOI
               70.      Fiocchi J, Biffi CA, Colombo C, Vergani LM, Tuissi A. Ad hoc heat treatments for selective laser melted Alsi10mg alloy aimed at
                   stress-relieving and enhancing mechanical performances. JOM 2020;72:1118-27.  DOI
               71.      Li Z, Li Z, Tan Z, Xiong D, Guo Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively
                   manufactured AlSi10Mg alloys. Int J Plast 2020;127:102640.  DOI
               72.      Sert E, Hitzler L, Hafenstein S, Merkel M, Werner E, Öchsner A. Tensile and compressive behaviour of additively manufactured
                   AlSi10Mg samples. Prog Addit Manuf 2020;5:305-13.  DOI
               73.      Park T, Baek M, Hyer H, Sohn Y, Lee K. Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy
                   manufactured by selective laser melting process. Mater Charact 2021;176:111113.  DOI
               74.      Ou Y, Zhang Q, Wei Y, et al. Evolution of heterogeneous microstructure and its effects on tensile properties of selective laser melted
                   AlSi10Mg alloy. J Mater Eng Perform 2021;30:4341-55.  DOI
               75.      Paul MJ, Liu Q, Best JP, et al. Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Mater 2021;211:116869.
                   DOI
               76.      Riener K, Oswald S, Winkler M, Leichtfried GJ. Influence of storage conditions and reconditioning of AlSi10Mg powder on the
                   quality of parts produced by laser powder bed fusion (LPBF). Addit Manuf 2021;39:101896.  DOI
               77.      Chen S, Tan Q, Gao W, et al. Effect of heat treatment on the anisotropy in mechanical properties of selective laser melted AlSi10Mg.
                   Mater Sci Eng A 2022;858:144130.  DOI
               78.      Bisht MS, Gaur V, Singh I. On mechanical properties of SLM Al-Si alloy: Role of heat treatment-induced evolution of silicon
                   morphology. Mater Sci Eng A 2022;858:144157.  DOI
               79.      Van Cauwenbergh P, Samaee V, Thijs L, et al. Unravelling the multi-scale structure-property relationship of laser powder bed fusion
                   processed and heat-treated AlSi10Mg. Sci Rep 2021;11:6423.  DOI  PubMed  PMC
               80.      Thijs L, Kempen K, Kruth J, Van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting
                   of pre-alloyed AlSi10Mg powder. Acta Mater 2013;61:1809-19.  DOI
               81.      Kumar MS, Javidrad HR, Shanmugam R, Ramoni M, Adediran AA, Pruncu CI. Impact of print orientation on morphological and
                   mechanical properties of L-PBF based AlSi7Mg parts for aerospace applications. Silicon 2022;14:7083-97.  DOI
               82.      Ashby M. Multi-objective optimization in material design and selection. Acta Mater 2000;48:359-69.  DOI
               83.      Zhao L, Song L, Santos Macías JG, et al. Review on the correlation between microstructure and mechanical performance for laser
                   powder bed fusion AlSi10Mg. Addit Manuf 2022;56:102914.  DOI
   72   73   74   75   76   77   78   79   80   81   82