Page 76 - Read Online
P. 76
Page 14 of 15 Gao et al. J Mater Inf 2023;3:6 https://dx.doi.org/10.20517/jmi.2023.03
machine learning. J Mater Sci Technol 2022;112:277-90. DOI
30. Gao J, Zhong J, Liu G, et al. A machine learning accelerated distributed task management system (Malac-Distmas) and its application
in high-throughput CALPHAD computation aiming at efficient alloy design. Adv Powder Mater 2022;1:100005. DOI
31. Wei M, Tang Y, Zhang L, Sun W, Du Y. Phase-field simulation of microstructure evolution in industrial A2214 alloy during
solidification. Metall and Mat Trans A 2015;46:3182-91. DOI
32. Gao J, Malchère A, Yang S, et al. Dewetting of Ni silicide thin film on Si substrate: in-situ experimental study and phase-field
modeling. Acta Mater 2022;223:117491. DOI
33. Yang S, Zhong J, Wang J, Gao J, Li Q, Zhang L. A novel computational model for isotropic interfacial energies in multicomponent
alloys and its coupling with phase-field model with finite interface dissipation. J Mater Sci Technol 2023;133:111-22. DOI
34. Zhang J, Yuan W, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum
alloys. Adv Powder Mater 2022;1:100035. DOI
35. Yi W, Liu G, Gao J, Zhang L. Boosting for concept design of casting aluminum alloys driven by combining computational
thermodynamics and machine learning techniques. J Mater Inf 2021;1:11. DOI
36. Zhang S, Yi W, Zhong J, Gao J, Lu Z, Zhang L. Computer alloy design of Ti modified Al-Si-Mg-Sr casting alloys for achieving
simultaneous enhancement in strength and ductility. Materials 2022;16:306. DOI PubMed PMC
37. Mondal B, Mukherjee T, Debroy T. Crack free metal printing using physics informed machine learning. Acta Mater 2022;226:117612.
DOI
38. Yu T, Mo X, Chen M, Yao C. Machine-learning-assisted microstructure-property linkages of carbon nanotube-reinforced aluminum
matrix nanocomposites produced by laser powder bed fusion. Nanotechnol Rev 2021;10:1410-24. DOI
39. He P, Liu Q, Kruzic JJ, Li X. Machine-learning assisted additive manufacturing of a TiCN reinforced AlSi10Mg composite with
tailorable mechanical properties. Mater Lett 2022;307:131018. DOI
40. Prashanth K, Scudino S, Klauss H, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting:
Effect of heat treatment. Mater Sci Eng A 2014;590:153-60. DOI
41. Prashanth K, Scudino S, Eckert J. Tensile properties of Al-12Si fabricated via selective laser melting (SLM) at different temperatures.
Technologies 2016;4:38. DOI
42. Li X, Wang X, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable
ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater 2015;95:74-82. DOI
43. Prashanth K, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater
2017;126:25-35. DOI
44. Liu M, Wada T, Suzuki A, Takata N, Kobashi M, Kato M. Effect of annealing on anisotropic tensile properties of Al-12%Si alloy
fabricated by laser powder bed fusion. Crystals 2020;10:1007. DOI
45. Wang X, Zhang L, Fang M, Sercombe T. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si
alloy. Mater Sci Eng A 2014;597:370-5. DOI
46. Rashid R, Masood S, Ruan D, et al. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy.
Addit Manuf 2018;22:426-39. DOI
47. Zhang S, Ma P, Jia Y, et al. Microstructure and mechanical properties of Al-(12-20)Si Bi-material fabricated by selective laser melting.
Materials 2019;12:2126. DOI PubMed PMC
48. Siddique S, Imran M, Wycisk E, Emmelmann C, Walther F. Influence of process-induced microstructure and imperfections on
mechanical properties of AlSi12 processed by selective laser melting. J Mater Process Technol 2015;221:205-13. DOI
49. Kimura T, Nakamoto T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective
laser melting. Mater Des 2016;89:1294-301. DOI
50. Rao H, Giet S, Yang K, Wu X, Davies CH. The influence of processing parameters on aluminium alloy A357 manufactured by
selective laser melting. Mater Des 2016;109:334-46. DOI
51. Rao JH, Zhang Y, Fang X, Chen Y, Wu X, Davies CH. The origins for tensile properties of selective laser melted aluminium alloy
A357. Addit Manuf 2017;17:113-22. DOI
52. Casati R, Vedani M. Aging response of an A357 Al alloy processed by selective laser melting. Adv Eng Mater 2019;21:1800406. DOI
53. de Menezes JT, Castrodeza EM, Casati R. Effect of build orientation on fracture and tensile behavior of A357 Al alloy processed by
selective laser melting. Mater Sci Eng A 2019;766:138392. DOI
54. Zou T, Ou Y, Zhu H, Li L. Effects of heat treatment on microstructure and tensile properties of AlSi7Mg alloy fabricated by selective
laser melting. Hot Work Technol 2019;48:154-7. DOI
55. Tang G, Feng T, Duan G, et al. Process and properties of AlSi7Mg alloy fabricated by laser selected melting. Foundry Technol
2020;41:219-22. DOI
56. Zou T, Ou Y, Zhu H, Qin J. Microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Available from: http://
www.mater-rep.com/EN/abstract/abstract2647.shtml [Last accessed on 28 Mar 2023].
57. Cerri E, Ghio E. Aging profiles of AlSi7Mg0.6 and AlSi10Mg0.3 Alloys manufactured via laser-powder bed fusion: direct aging
versus T6. Materials 2022;15:6126. DOI PubMed PMC
58. Cacace S, Gökhan Demir A, Sala G, Mattia Grande A. Influence of production batch related parameters on static and fatigue resistance
of LPBF produced AlSi7Mg0.6. Int J Fatigue 2022;165:107227. DOI
59. Rao JH, Zhang Y, Zhang K, Wu X, Huang A. Selective laser melted Al-7Si-0.6Mg alloy with in-situ precipitation via platform heating