Page 76 - Read Online
P. 76

Page 14 of 15                          Gao et al. J Mater Inf 2023;3:6  https://dx.doi.org/10.20517/jmi.2023.03

                   machine learning. J Mater Sci Technol 2022;112:277-90.  DOI
               30.      Gao J, Zhong J, Liu G, et al. A machine learning accelerated distributed task management system (Malac-Distmas) and its application
                   in high-throughput CALPHAD computation aiming at efficient alloy design. Adv Powder Mater 2022;1:100005.  DOI
               31.      Wei M, Tang Y, Zhang L, Sun W, Du Y. Phase-field simulation of microstructure evolution in industrial A2214 alloy during
                   solidification. Metall and Mat Trans A 2015;46:3182-91.  DOI
               32.      Gao J, Malchère A, Yang S, et al. Dewetting of Ni silicide thin film on Si substrate: in-situ experimental study and phase-field
                   modeling. Acta Mater 2022;223:117491.  DOI
               33.      Yang S, Zhong J, Wang J, Gao J, Li Q, Zhang L. A novel computational model for isotropic interfacial energies in multicomponent
                   alloys and its coupling with phase-field model with finite interface dissipation. J Mater Sci Technol 2023;133:111-22.  DOI
               34.      Zhang J, Yuan W, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum
                   alloys. Adv Powder Mater 2022;1:100035.  DOI
               35.      Yi W, Liu G, Gao J, Zhang L. Boosting for concept design of casting aluminum alloys driven by combining computational
                   thermodynamics and machine learning techniques. J Mater Inf 2021;1:11.  DOI
               36.      Zhang S, Yi W, Zhong J, Gao J, Lu Z, Zhang L. Computer alloy design of Ti modified Al-Si-Mg-Sr casting alloys for achieving
                   simultaneous enhancement in strength and ductility. Materials 2022;16:306.  DOI  PubMed  PMC
               37.      Mondal B, Mukherjee T, Debroy T. Crack free metal printing using physics informed machine learning. Acta Mater 2022;226:117612.
                   DOI
               38.      Yu T, Mo X, Chen M, Yao C. Machine-learning-assisted microstructure-property linkages of carbon nanotube-reinforced aluminum
                   matrix nanocomposites produced by laser powder bed fusion. Nanotechnol Rev 2021;10:1410-24.  DOI
               39.      He P, Liu Q, Kruzic JJ, Li X. Machine-learning assisted additive manufacturing of a TiCN reinforced AlSi10Mg composite with
                   tailorable mechanical properties. Mater Lett 2022;307:131018.  DOI
               40.      Prashanth K, Scudino S, Klauss H, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting:
                   Effect of heat treatment. Mater Sci Eng A 2014;590:153-60.  DOI
               41.      Prashanth K, Scudino S, Eckert J. Tensile properties of Al-12Si fabricated via selective laser melting (SLM) at different temperatures.
                   Technologies 2016;4:38.  DOI
               42.      Li X, Wang X, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable
                   ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater 2015;95:74-82.  DOI
               43.      Prashanth K, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater
                   2017;126:25-35.  DOI
               44.      Liu M, Wada T, Suzuki A, Takata N, Kobashi M, Kato M. Effect of annealing on anisotropic tensile properties of Al-12%Si alloy
                   fabricated by laser powder bed fusion. Crystals 2020;10:1007.  DOI
               45.      Wang X, Zhang L, Fang M, Sercombe T. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si
                   alloy. Mater Sci Eng A 2014;597:370-5.  DOI
               46.      Rashid R, Masood S, Ruan D, et al. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy.
                   Addit Manuf 2018;22:426-39.  DOI
               47.      Zhang S, Ma P, Jia Y, et al. Microstructure and mechanical properties of Al-(12-20)Si Bi-material fabricated by selective laser melting.
                   Materials 2019;12:2126.  DOI  PubMed  PMC
               48.      Siddique S, Imran M, Wycisk E, Emmelmann C, Walther F. Influence of process-induced microstructure and imperfections on
                   mechanical properties of AlSi12 processed by selective laser melting. J Mater Process Technol 2015;221:205-13.  DOI
               49.      Kimura T, Nakamoto T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective
                   laser melting. Mater Des 2016;89:1294-301.  DOI
               50.      Rao H, Giet S, Yang K, Wu X, Davies CH. The influence of processing parameters on aluminium alloy A357 manufactured by
                   selective laser melting. Mater Des 2016;109:334-46.  DOI
               51.      Rao JH, Zhang Y, Fang X, Chen Y, Wu X, Davies CH. The origins for tensile properties of selective laser melted aluminium alloy
                   A357. Addit Manuf 2017;17:113-22.  DOI
               52.      Casati R, Vedani M. Aging response of an A357 Al alloy processed by selective laser melting. Adv Eng Mater 2019;21:1800406.  DOI
               53.      de Menezes JT, Castrodeza EM, Casati R. Effect of build orientation on fracture and tensile behavior of A357 Al alloy processed by
                   selective laser melting. Mater Sci Eng A 2019;766:138392.  DOI
               54.      Zou T, Ou Y, Zhu H, Li L. Effects of heat treatment on microstructure and tensile properties of AlSi7Mg alloy fabricated by selective
                   laser melting. Hot Work Technol 2019;48:154-7.  DOI
               55.      Tang G, Feng T, Duan G, et al. Process and properties of AlSi7Mg alloy fabricated by laser selected melting. Foundry Technol
                   2020;41:219-22.  DOI
               56.      Zou T, Ou Y, Zhu H, Qin J. Microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Available from: http://
                   www.mater-rep.com/EN/abstract/abstract2647.shtml [Last accessed on 28 Mar 2023].
               57.      Cerri E, Ghio E. Aging profiles of AlSi7Mg0.6 and AlSi10Mg0.3 Alloys manufactured via laser-powder bed fusion: direct aging
                   versus T6. Materials 2022;15:6126.  DOI  PubMed  PMC
               58.      Cacace S, Gökhan Demir A, Sala G, Mattia Grande A. Influence of production batch related parameters on static and fatigue resistance
                   of LPBF produced AlSi7Mg0.6. Int J Fatigue 2022;165:107227.  DOI
               59.      Rao JH, Zhang Y, Zhang K, Wu X, Huang A. Selective laser melted Al-7Si-0.6Mg alloy with in-situ precipitation via platform heating
   71   72   73   74   75   76   77   78   79   80   81