Page 75 - Read Online
P. 75
Gao et al. J Mater Inf 2023;3:6 https://dx.doi.org/10.20517/jmi.2023.03 Page 13 of 15
REFERENCES
1. Zhang J, Song B, Wei Q, Bourell D, Shi Y. A review of selective laser melting of aluminum alloys: Processing, microstructure,
property and developing trends. J Mater Sci Technol 2019;35:270-84. DOI
2. Ghio E, Cerri E. Additive manufacturing of AlSi10Mg and Ti Al V lightweight alloys via laser powder bed fusion: a review of heat
6 4
treatments effects. Materials 2022;15:2047. DOI PubMed PMC
3. Kimura T, Nakamoto T, Ozaki T, Sugita K, Mizuno M, Araki H. Microstructural formation and characterization mechanisms of
selective laser melted Al-Si-Mg alloys with increasing magnesium content. Mater Sci Eng A 2019;754:786-98. DOI
4. Kimura T, Nakamoto T, Mizuno M, Araki H. Effect of silicon content on densification, mechanical and thermal properties of Al-xSi
binary alloys fabricated using selective laser melting. Mater Sci Eng A 2017;682:593-602. DOI
5. Suryawanshi J, Prashanth K, Scudino S, Eckert J, Prakash O, Ramamurty U. Simultaneous enhancements of strength and toughness in
an Al-12Si alloy synthesized using selective laser melting. Acta Mater 2016;115:285-94. DOI
6. Wang P, Lao C, Chen Z, et al. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by
selective laser melting. J Mater Sci Technol 2020;36:18-26. DOI
7. Awd M, Siddique S, Walther F. Microstructural damage and fracture mechanisms of selective laser melted Al-Si alloys under fatigue
loading. Theor Appl Fract Mech 2020;106:102483. DOI
8. Cerri E, Ghio E, Bolelli G. Effect of the distance from build platform and post-heat treatment of AlSi10Mg alloy manufactured by
single- and multi-laser selective laser melting. J Mater Eng Perform 2021;30:4981-92. DOI
9. Chen B, Moon S, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr Mater 2017;141:45-9.
DOI
10. Larrosa N, Wang W, Read N, et al. Linking microstructure and processing defects to mechanical properties of selectively laser melted
AlSi10Mg alloy. Theor Appl Fract Mech 2018;98:123-33. DOI
11. Hwang WJ, Bang GB, Choa S. Effect of a stress relief heat treatment of AlSi7Mg and AlSi10Mg alloys on mechanical and electrical
properties according to silicon precipitation. Met Mater Int 2022. DOI
12. Denti L. Additive manufactured A357.0 samples using the laser powder bed fusion technique: shear and tensile performance. Metals
2018;8:670. DOI
13. Yang KV, Rometsch P, Davies C, Huang A, Wu X. Effect of heat treatment on the microstructure and anisotropy in mechanical
properties of A357 alloy produced by selective laser melting. Mater Des 2018;154:275-90. DOI
14. Suzuki A, Miyasaka T, Takata N, Kobashi M, Kato M. Control of microstructural characteristics and mechanical properties of AlSi12
alloy by processing conditions of laser powder bed fusion. Addit Manuf 2021;48:102383. DOI
15. Gheysen J, Marteleur M, van der Rest C, Simar A. Efficient optimization methodology for laser powder bed fusion parameters to
manufacture dense and mechanically sound parts validated on AlSi12 alloy. Mater Des 2021;199:109433. DOI
16. Mei J, Han Y, Zu G, et al. Achieving superior strength and ductility of AlSi10Mg alloy fabricated by selective laser melting with large
laser power and high scanning speed. Acta Metall Sin 2022;35:1665-72. DOI
17. Dai D, Gu D, Zhang H, et al. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of
selective laser melting additive manufactured aluminum based parts. Opt Laser Technol 2018;99:91-100. DOI
18. Giovagnoli M, Silvi G, Merlin M, Di Giovanni MT. Optimisation of process parameters for an additively manufactured AlSi10Mg
alloy: limitations of the energy density-based approach on porosity and mechanical properties estimation. Mater Sci Eng A
2021;802:140613. DOI
19. Salandari-rabori A, Wang P, Dong Q, Fallah V. Enhancing as-built microstructural integrity and tensile properties in laser powder bed
fusion of AlSi10Mg alloy using a comprehensive parameter optimization procedure. Mater Sci Eng A 2021;805:140620. DOI
20. Wang C, Zhu J, Wang G, et al. Effect of building orientation and heat treatment on the anisotropic tensile properties of AlSi10Mg
fabricated by selective laser melting. J Alloys Compd 2022;895:162665. DOI
21. Li X, Yi D, Wu X, et al. Effect of construction angles on microstructure and mechanical properties of AlSi10Mg alloy fabricated by
selective laser melting. J Alloys Compd 2021;881:160459. DOI
22. Maconachie T, Leary M, Zhang J, et al. Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg. Mater
Sci Eng A 2020;788:139445. DOI
23. Gupta MK, Singla AK, Ji H, et al. Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour
of SLM Al-Si-10Mg alloy. J Mater Res Technol 2020;9:9506-22. DOI
24. Yadav P, Rigo O, Arvieu C, Lacoste E. Microstructural and mechanical aspects of AlSi7Mg0.6 alloy related to scanning strategies in
L-PBF. Int J Adv Manuf Technol 2022;120:6205-23. DOI
25. Lu Z, Zhang L. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-
additional A356 alloys. Mater Des 2017;116:427-37. DOI
26. Lu Z, Zhang L, Wang J, Yao Q, Rao G, Zhou H. Understanding of strengthening and toughening mechanisms for Sc-modified Al-Si-
(Mg) series casting alloys designed by computational thermodynamics. J Alloys Compd 2019;805:415-25. DOI
27. Liu G, Gao J, Che C, Lu Z, Yi W, Zhang L. Optimization of casting means and heat treatment routines for improving mechanical and
corrosion resistance properties of A356-0.54Sc casting alloy. Mater Today Commun 2020;24:101227. DOI
28. Gao J, Li Z. Current situation and prospect of computationally assisted design in high-performance additive manufactured aluminum
alloys: a review. Acta Met Sin 2022;59:87-105. DOI
29. Yi W, Liu G, Lu Z, Gao J, Zhang L. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and