Page 60 - Read Online
P. 60

Park et al. J Mater Inf 2023;3:5  https://dx.doi.org/10.20517/jmi.2022.37       Page 23 of 25

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       The Swedish Steel Producers’ Association. Environmental evaluation of steel and steel structures. Available from: https://
                   www.jernkontoret.se/globalassets/publicerat/handbocker/stalkretsloppet_slutrapport_miljohandbok_engelsk_web.pdf [Last accessed
                   on 16 Mar 2023].
               2.       Jégourel Y. The global iron ore market: from cyclical developments to potential structural changes. Extr Ind Soc 2020;7:1128-34.  DOI
               3.       Zhang X, Ma G, Liu M, Li Z. Removal of residual element tin in the ferrous metallurgy process: a review. Metals 2019;9:834.  DOI
               4.       Nachtrab WT, Chou YT. Grain boundary segregation of copper, tin and antimony in C-Mn steels at 900 °C. J Mater Sci 1984;19:2136-
                   44.  DOI
               5.       Kim SW, Lee HG. Effect of oxide scale formation on the behaviour of Cu in steel during high temperature oxidation in O -N  and H
                                                                                                  2  2   2
                   O-N  atmospheres. Steel Res Int 2009;80:121-9.  DOI
                      2
               6.       Yin L, Sridhar S. Effects of residual elements arsenic, antimony, and tin on surface hot shortness. Metall and Materi Trans B
                   2011;42:1031-43.  DOI
               7.       Shubhank K, Kang Y. Critical evaluation and thermodynamic optimization of Fe-Cu, Cu-C, Fe-C binary systems and Fe-Cu-C ternary
                   system. Calphad 2014;45:127-37.  DOI
               8.       Melford DA. The influence of residual and trace elements on hot shortness and high temperature embrittlement. Phil Trans R Soc
                   Lond A 1980;295:89-103.  DOI
               9.       Yu Y, Li L, Wang J. Sn recovery from a tin-bearing middling with a high iron content and the transformation behaviours of the
                   associated As, Pb, and Zn. Sci Total Environ 2020;744:140863.  DOI  PubMed
               10.      Su Z, Zhang Y, Liu B, Lu M, Li G, Jiang T. Extraction and separation of tin from tin-bearing secondary resources: a review. JOM
                   2017;69:2364-72.  DOI
               11.      Bunnakkha C, Jarupisitthorn C. Extraction of tin from hardhead by oxidation and fusion with sodium hydroxide. J Met Mater Miner
                   2012;22:1-6.
               12.      Lee S, Lee M, Kim HY. Recovery of high purity Sn by multi-step reduction of Sn-containing industrial wastes. J Korean Inst Resour
                   Recyc 2015;24:11-5.  DOI
               13.      Spencer P. A brief history of CALPHAD. Calphad 2008;32:1-8.  DOI
               14.      Sundman B, Lukas HL, Fries SG. Computational thermodynamics: the Calphad method. 1st ed. Cambridge University Press; 2007. pp.
                   1-296.  DOI
               15.      Bale C, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010-2016. Calphad 2016;54:35-53.  DOI
               16.      Andersson J, Helander T, Höglund L, Shi P, Sundman B. Thermo-Calc & DICTRA, computational tools for materials science.
                   Calphad 2002;26:273-312.  DOI
               17.      Cao W, Chen S, Zhang F, et al. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase
                   diagram calculation and materials property simulation. Calphad 2009;33:328-42.  DOI
               18.      Nüssler H, von Goldbeck O, Spencer P. A thermodynamic assessment of the iron-tin system. Calphad 1979;3:19-26.  DOI
               19.      Kumar K, Wollants P, Delaey L. Thermodynamic evaluation of Fe-Sn phase diagram. Calphad 1996;20:139-49.  DOI
               20.      Miettinen J. Thermodynamic description of the Cu-Fe-Sn system at the Cu-Fe side. Calphad 2008;32:500-5.  DOI
               21.      Huang YC, Gierlotka W, Chen SW. Sn-Bi-Fe Thermodynamic modeling and Sn-Bi/Fe interfacial reactions. Intermetallics
                   2010;18:984-91.  DOI
               22.      Lafaye P, Toffolon-masclet C, Crivello J, Joubert J. Thermodynamic modelling of the Fe-Sn-Zr system based on new experiments and
                   first-principles calculations. J Alloys Compd 2020;821:153200.  DOI
               23.      Hillert M. The compound energy formalism. J Alloys Compd 2001;320:161-76.  DOI
               24.      Kang YB, Pelton AD. The shape of liquid miscibility gaps and short-range-order. J Chem Thermodyn 2013;60:19-24.  DOI
               25.      Pelton AD, Degterov SA, Eriksson G, Robelin C, Dessureault Y. The modified quasichemical model I - binary solutions. Metall Mater
                   Trans B 2000;31:651-9.  DOI
               26.      Pelton AD, Chartrand P. The modified quasi-chemical model: Part II. Multicomponent solutions. Metall Mater Trans A 2001;32:1355-
                   60.  DOI
               27.      Okamoto H. Phase diagrams of binary iron alloys. Metals park, Ohio: American Society for Metals; 1993:385-92.
               28.      Ehret WF, Westgren AF. X-ray analysis of iron-tin alloys. J Am Chem Soc 1933;55:1339-51.  DOI
               29.      Campbell AN, Wood JH, Skinner GB. The system iron-tin: liquidus only. J Am Chem Soc 1949;71:1729-33.  DOI
   55   56   57   58   59   60   61   62   63   64   65