Page 61 - Read Online
P. 61
Page 24 of 25 Park et al. J Mater Inf 2023;3:5 https://dx.doi.org/10.20517/jmi.2022.37
30. Mills KC, Turkdogan ET. Liquid miscibility gap in iron-tin system. Trans Metall Soc AIME 1964;230:1202-3.
31. Hillert M, Wada T, Wada H. The alpha-gamma equilibrium in Fe-Mn, Fe-Mo, Fe-Ni, Fe-Sb, Fe-Sn and Fe-W systems. J Iron Steel
Inst 1967;205:539-46.
32. Kozuka Z, Shidahara Y, Sugimoto E, et al. Thermodynamic study of hardhead (tin-iron alloy). Nippon Kogyo Kaishi 1968;84:1657-62.
DOI
33. Shiraishi SY, Bell HB. Miscibility gap in liquid iron-tin alloys. Trans Inst Min Metall Sect C 1968;77:104-5.
34. Speight EA. The gamma loop in the iron-Tin system. Met Sci J 1972;6:57-60. DOI
35. Predel B, Frebel M. Precipitation behavior of α-solid solutions of the Fe-Sn system. Metall Trans 1973;4:243-9. DOI
36. Nageswararao M, Mcmahon CJ, Herman H. The solubility and solution behavior of antimony and tin in α-lron and the effects of nickel
and chromium additions. Metall Trans B 1974;5:1061-8. DOI
37. Treheux D, Guiraldenq P. Etude des diagrammes d’equilibre binaires par la methode des couples de diffusion application au systeme
fer-etain. Scr Metall 1974;8:363-6. DOI
38. Connolly J, Mcallan J. The tin-iron eutecticL'eutectique etain-ferDas Zinn-eisen-eutektikum. Acta Metallurgica 1975;23:1209-14. DOI
39. Malaman B, Roques B, Courtois A, Protas J. Structure cristalline du stannure de fer Fe Sn . Acta Crystallogr B Struct Sci
3 2
1976;32:1348-51. DOI
40. Eremenko VN, Churakov MM, Pechentkovskaya LE. Conditions of stannide formation during the interaction of Fe with a Sn-Pb melt
and their thermodynamic properties. Russ Metall 1976;4:58-62.
41. Yamamoto T, Takashima T, Nishida K. Interdiffusion in the α-solid solutions of the Fe-Sn system. J Jpn Inst Met 1981;45:985-90.
DOI
42. Yamamoto M, Mori S, Kato E. Mass spectrometric study of the thermodynamic properties of liquid Fe-Sn, Fe-Sn-Cu alloys. Tetsu-to-
Hagane 1981;67:1952-61. DOI
43. Arita M, Ohyama M, Goto KS, Someno M. Measurements of activity, solubility, and diffusivity in α and γ Fe-Sn alloys between 1183
and 1680 K. Int J Mater Res 1981;72:244-50. DOI
44. Nunoue S, Kato E. Mass spectrometric determination of the miscibility gap in the liquid Fe-Sn system and the activities of this system
at 1550 °C and 1600 °C. Tetsu-to-Hagane 1987;73:868-75. DOI
45. Imai N, Tanaka T, Yuki T, Iida T, Morita Z. Equilibrium distribution of Sn between solid and liquid phases in Fe-Sn and Fe-C-Sn
alloys. Tetsu-to-Hagane 1991;77:224-30. DOI
46. Gao J, Li C, Guo C, Du Z. Investigation of the stable and the metastable liquidus miscibility gaps in Fe-Sn and Fe-Cu binary systems.
Int J Miner Metall Mater 2019;26:1427-35. DOI
47. Bernhard M, Fuchs N, Presoly P, Angerer P, Friessnegger B, Bernhard C. Characterization of the γ-loop in the Fe-P system by
coupling DSC and HT-LSCM with complementary in-situ experimental techniques. Mater Charact 2021;174:111030. DOI
48. Bernhard M, Presoly P, Fuchs N, Bernhard C, Kang Y. Experimental study of high temperature phase equilibria in the iron-rich part of
the Fe-P and Fe-C-P systems. Metall Mater Trans A 2020;51:5351-64. DOI
49. Bernhard M, Presoly P, Bernhard C et al. An assessment of analytical liquidus equations for Fe-C-Si-Mn-Al-P-alloyed steels using
DSC/DTA techniques. Metall Mater Trans B 2021;52:2821-30. DOI
50. Kim DI, Abbaschian R. The metastable liquid miscibility gap in Cu-Co-Fe alloys. J Phase Equilibria Diffus 2000;21:25-31. DOI
51. Min S, Park J, Lee J. Surface tension of the 60% Bi-24% Cu-16%Sn alloy and the critical temperature of the immiscible liquid phase
separation. Maters Lett 2008;62:4464-6. DOI
52. Lee D, Cho Y, Kim JH, Hwang I, Chung Y, Kang Y. Application of k-means clustering to material research: measurement of layer
thickness and contact angle. Met Mater Int ;2023:1-12. DOI
53. Lee S. Comparison of initial seeds methods for K-means clustering. J Internet Comput Serv 2012;13:1-8. DOI
54. Morissette L, Chartier S. The k-means clustering technique: general considerations and implementation in Mathematica. Tutor Quant
Methods Psychol 2013;9:15-24. DOI
55. Boettinger WJ, Kattner UR, Moon K, Perepezko JH. DTA and heat-flux DSC measurements of alloy melting and freezing. In: Zhao
ZC, editor. Methods for phase diagram determination. Amsterdam: Elsevier Science; 2006. pp. 151-205. DOI
56. Barin I. Thermochemical data of pure substances. Part I and Part II. NewYork: Verlag Chemie; 1989, pp. 1392. DOI
57. Humenik M, Kingery WD. Metal-ceramic interactions: III, surface tension and wettability of metal-ceramic systems. J Am Ceramic
Soc 1954;37:18-23. DOI
58. Chidambaram PR, Edwards GR, Olson DL. A thermodynamic criterion to predict wettability at metal- alumina interfaces. Metall
Mater Trans B 1992;23:215-22. DOI
59. Kapilashrami E, Jakobsson A, Seetharaman S, Lahiri AK. Studies of the wetting characteristics of liquid iron on dense alumina by the
X-ray sessile drop technique. Metall and Materi Trans B 2003;34:193-9. DOI
60. Nikolopoulos P. Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3-Sn, Al2O3-Co systems. J Mater Sci
1985;20:3993-4000. DOI
61. Pelton AD, Kang Y. Modeling short-range ordering in solutions. Int J Mater Res 2007;98:907-17. DOI
62. Tafwidli F, Kang Y. Thermodynamic modeling of Fe-C-S ternary system. ISIJ Int 2017;57:782-90. DOI
63. Pelton AD, Blander M. Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach - application to
silicate slags. Metall Mater Trans B 1986;17:805-15. DOI
64. Hillert M, Jarl M. A model for alloying in ferromagnetic metals. Calphad 1978;2:227-38. DOI