Page 61 - Read Online
P. 61

Page 24 of 25                          Park et al. J Mater Inf 2023;3:5  https://dx.doi.org/10.20517/jmi.2022.37

               30.      Mills KC, Turkdogan ET. Liquid miscibility gap in iron-tin system. Trans Metall Soc AIME 1964;230:1202-3.
               31.      Hillert M, Wada T, Wada H. The alpha-gamma equilibrium in Fe-Mn, Fe-Mo, Fe-Ni, Fe-Sb, Fe-Sn and Fe-W systems. J Iron Steel
                   Inst 1967;205:539-46.
               32.      Kozuka Z, Shidahara Y, Sugimoto E, et al. Thermodynamic study of hardhead (tin-iron alloy). Nippon Kogyo Kaishi 1968;84:1657-62.
                   DOI
               33.     Shiraishi SY, Bell HB. Miscibility gap in liquid iron-tin alloys. Trans Inst Min Metall Sect C 1968;77:104-5.
               34.     Speight EA. The gamma loop in the iron-Tin system. Met Sci J 1972;6:57-60.  DOI
               35.     Predel B, Frebel M. Precipitation behavior of α-solid solutions of the Fe-Sn system. Metall Trans 1973;4:243-9.  DOI
               36.      Nageswararao M, Mcmahon CJ, Herman H. The solubility and solution behavior of antimony and tin in α-lron and the effects of nickel
                   and chromium additions. Metall Trans B 1974;5:1061-8.  DOI
               37.      Treheux D, Guiraldenq P. Etude des diagrammes d’equilibre binaires par la methode des couples de diffusion application au systeme
                   fer-etain. Scr Metall 1974;8:363-6.  DOI
               38.     Connolly J, Mcallan J. The tin-iron eutecticL'eutectique etain-ferDas Zinn-eisen-eutektikum. Acta Metallurgica 1975;23:1209-14.  DOI
               39.      Malaman B, Roques B, Courtois A, Protas J. Structure cristalline du stannure de fer Fe Sn . Acta Crystallogr B Struct Sci
                                                                                 3  2
                   1976;32:1348-51.  DOI
               40.      Eremenko VN, Churakov MM, Pechentkovskaya LE. Conditions of stannide formation during the interaction of Fe with a Sn-Pb melt
                   and their thermodynamic properties. Russ Metall 1976;4:58-62.
               41.      Yamamoto T, Takashima T, Nishida K. Interdiffusion in the α-solid solutions of the Fe-Sn system. J Jpn Inst Met 1981;45:985-90.
                   DOI
               42.      Yamamoto M, Mori S, Kato E. Mass spectrometric study of the thermodynamic properties of liquid Fe-Sn, Fe-Sn-Cu alloys. Tetsu-to-
                   Hagane 1981;67:1952-61.  DOI
               43.      Arita M, Ohyama M, Goto KS, Someno M. Measurements of activity, solubility, and diffusivity in α and γ Fe-Sn alloys between 1183
                   and 1680 K. Int J Mater Res 1981;72:244-50.  DOI
               44.      Nunoue S, Kato E. Mass spectrometric determination of the miscibility gap in the liquid Fe-Sn system and the activities of this system
                   at 1550 °C and 1600 °C. Tetsu-to-Hagane 1987;73:868-75.  DOI
               45.      Imai N, Tanaka T, Yuki T, Iida T, Morita Z. Equilibrium distribution of Sn between solid and liquid phases in Fe-Sn and Fe-C-Sn
                   alloys. Tetsu-to-Hagane 1991;77:224-30.  DOI
               46.      Gao J, Li C, Guo C, Du Z. Investigation of the stable and the metastable liquidus miscibility gaps in Fe-Sn and Fe-Cu binary systems.
                   Int J Miner Metall Mater 2019;26:1427-35.  DOI
               47.      Bernhard M, Fuchs N, Presoly P, Angerer P, Friessnegger B, Bernhard C. Characterization of the γ-loop in the Fe-P system by
                   coupling DSC and HT-LSCM with complementary in-situ experimental techniques. Mater Charact 2021;174:111030.  DOI
               48.      Bernhard M, Presoly P, Fuchs N, Bernhard C, Kang Y. Experimental study of high temperature phase equilibria in the iron-rich part of
                   the Fe-P and Fe-C-P systems. Metall Mater Trans A 2020;51:5351-64.  DOI
               49.      Bernhard M, Presoly P, Bernhard C et al. An assessment of analytical liquidus equations for Fe-C-Si-Mn-Al-P-alloyed steels using
                   DSC/DTA techniques. Metall Mater Trans B 2021;52:2821-30.  DOI
               50.      Kim DI, Abbaschian R. The metastable liquid miscibility gap in Cu-Co-Fe alloys. J Phase Equilibria Diffus 2000;21:25-31.  DOI
               51.      Min S, Park J, Lee J. Surface tension of the 60% Bi-24% Cu-16%Sn alloy and the critical temperature of the immiscible liquid phase
                   separation. Maters Lett 2008;62:4464-6.  DOI
               52.      Lee D, Cho Y, Kim JH, Hwang I, Chung Y, Kang Y. Application of k-means clustering to material research: measurement of layer
                   thickness and contact angle. Met Mater Int ;2023:1-12.  DOI
               53.      Lee S. Comparison of initial seeds methods for K-means clustering. J Internet Comput Serv 2012;13:1-8.  DOI
               54.      Morissette L, Chartier S. The k-means clustering technique: general considerations and implementation in Mathematica. Tutor Quant
                   Methods Psychol 2013;9:15-24.  DOI
               55.      Boettinger WJ, Kattner UR, Moon K, Perepezko JH. DTA and heat-flux DSC measurements of alloy melting and freezing. In: Zhao
                   ZC, editor. Methods for phase diagram determination. Amsterdam: Elsevier Science; 2006. pp. 151-205.  DOI
               56.      Barin I. Thermochemical data of pure substances. Part I and Part II. NewYork: Verlag Chemie; 1989, pp. 1392.  DOI
               57.      Humenik M, Kingery WD. Metal-ceramic interactions: III, surface tension and wettability of metal-ceramic systems. J Am Ceramic
                   Soc 1954;37:18-23.  DOI
               58.      Chidambaram PR, Edwards GR, Olson DL. A thermodynamic criterion to predict wettability at metal- alumina interfaces. Metall
                   Mater Trans B 1992;23:215-22.  DOI
               59.      Kapilashrami E, Jakobsson A, Seetharaman S, Lahiri AK. Studies of the wetting characteristics of liquid iron on dense alumina by the
                   X-ray sessile drop technique. Metall and Materi Trans B 2003;34:193-9.  DOI
               60.      Nikolopoulos P. Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3-Sn, Al2O3-Co systems. J Mater Sci
                   1985;20:3993-4000.  DOI
               61.      Pelton AD, Kang Y. Modeling short-range ordering in solutions. Int J Mater Res 2007;98:907-17.  DOI
               62.      Tafwidli F, Kang Y. Thermodynamic modeling of Fe-C-S ternary system. ISIJ Int 2017;57:782-90.  DOI
               63.      Pelton AD, Blander M. Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach - application to
                   silicate slags. Metall Mater Trans B 1986;17:805-15.  DOI
               64.      Hillert M, Jarl M. A model for alloying in ferromagnetic metals. Calphad 1978;2:227-38.  DOI
   56   57   58   59   60   61   62   63   64   65   66