Page 130 - Read Online
P. 130

Page 16 of 17                           Liu et al. J Mater Inf 2023;3:17  https://dx.doi.org/10.20517/jmi.2023.19
               58.      Pelaccio DG, El-Genk MS, Butt DP. A review of carbide fuel corrosion for nuclear thermal propulsion applications. Am Inst Phys
                   1994;301:905-18.  DOI
               59.      Wu XZ, Wei GL, Guo X. Study on preparation technology and performance mechanism of multi-component (U,Zr,Nb)C fuel. Sci
                                                                                                    .
                   Technol At Energy 2023;9:1-9. (in Chinese) Available from: http://kns.cnki.net/kcms/detail/11.2044.tl.20230626.1905.008.html  [Last
                   accessed on 15 Aug 2023]
               60.     Butt DP, Wallace TC. The U-Zr-C ternary phase diagram above 2473 K. J Am Ceram Soc 1993;76:1409-19.  DOI
               61.      Bourgeois L, Dehaudt P, Lemaignan C, Hammou A. Factors governing microstructure development of Cr O -doped UO  during
                                                                                           2  3     2
                   sintering. J Nucl Mater 2001;297:313-26.  DOI
               62.      Koroteev AS. Nuclear propulsion system application in the space exploration. In: The 10th International Burn and Combustion
                   Summit (2003).
               63.      Tian F, Lin DY, Gao X, Zhao YF, Song HF. Erratum: “a structural modeling approach to solid solutions based on the similar atomic
                   environment” [J. Chem. Phys. 153, 034101 (2020)]. J Chem Phys 2020;153:034101.  DOI  PubMed
               64.      Song H, Tian F, Hu Q, et al. Local lattice distortion in high-entropy alloys. Phys Rev Mater 2017;1:023404.  DOI
               65.      Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B
                   1996;54:11169-86.  DOI  PubMed
               66.      Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953-79.  DOI  PubMed
               67.      Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.  DOI  PubMed
               68.      Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13:5188-92.  DOI
               69.      Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 1989;40:3616-21.  DOI
                   PubMed
               70.      Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 1994;49:16223-33.
                   DOI  PubMed
               71.      Murnaghan FD. The Compressibility of media under extreme pressures. Proc Natl Acad Sci U S A 1944;30:244-7.  DOI  PubMed
                   PMC
               72.      Nakashima PN, Smith AE, Etheridge J, Muddle BC. The bonding electron density in aluminum. Science 2011;331:1583-6.  DOI
                   PubMed
               73.      Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst
                   2011;44:1272-6.  DOI
               74.      Ma D, Grabowski B, Körmann F, Neugebauer J, Raabe D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy:
                   importance of entropy contributions beyond the configurational one. Acta Mater 2015;100:90-7.  DOI
               75.      Song H, Liu H. Modified mean-field potential approach to thermodynamic properties of a low-symmetry crystal: beryllium as a
                   prototype. Phys Rev B 2007;75:245126.  DOI
               76.      Wang Y, Li L. Mean-field potential approach to thermodynamic properties of metal: Al as a prototype. Phys Rev B 2000;62:196-202.
                   DOI
               77.      Wang Y, Xu Y, Liu Y, et al. First-principles study of the role of surface in the heavy-fermion compound CeRh Si . Phys Rev B
                                                                                               2  2
                   2021;103:165140.  DOI
               78.      Wu J, Yang Z, Xian J, Gao X, Lin D, Song H. Structural and thermodynamic properties of the high-entropy alloy AlCoCrFeNi based
                   on first-principles calculations. Front Mater 2020;7:590143.  DOI
               79.      Wu J, Wang YC, Liu Y, et al. First-principles study on the electronic structure transition of β-UH 3  under high pressure. Matter Radiat
                   Extrem 2022;7:058402.  DOI
               80.      Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J Geophys Res
                   1978;83:1257-68.  DOI
               81.      Ye B, Wen T, Nguyen MC, Hao L, Wang C, Chu Y. First-principles study, fabrication and characterization of (Zr  Nb  Ti  V  )C
                                                                                             0.25  0.25  0.25  0.25
                   high-entropy ceramics. Acta Mater 2019;170:15-23.  DOI
               82.      Jiang S, Shao L, Fan T, Duan J, Chen X, Tang B. Elastic and thermodynamic properties of high entropy carbide (HfTaZrTi)C and
                   (HfTaZrNb)C from ab initio investigation. Ceram Int 2020;46:15104-12.  DOI
               83.      Maibam J, Indrajit Sharma B, Bhattacharjee R, Thapa R, Brojen Singh R. Electronic structure and elastic properties of scandium
                   carbide and yttrium carbide: a first principles study. Phys B Condens Matter 2011;406:4041-5.  DOI
               84.      Korir K, Amolo G, Makau N, Joubert D. First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides
                   in the rocksalt, zincblende and wurtzite structures. Diam Relat Mater 2011;20:157-64.  DOI
               85.      Shi H, Zhang P, Li S, Sun B, Wang B. Electronic structures and mechanical properties of uranium monocarbide from first-principles
                   LDA + U and GGA + U calculations. Phys Lett A 2009;373:3577-81.  DOI
               86.      Mei Z, Ye B, Yacout AM, Beeler B, Gao Y. First-principles study of the surface properties of uranium carbides. J Nucl Mater
                   2020;542:152257.  DOI
               87.      Isaev EI, Simak SI, Abrikosov IA, et al. Phonon related properties of transition metals, their carbides, and nitrides: a first-principles
                   study. J Appl Phys 2007;101:123519.  DOI
               88.      Zhao Y, Qiao J, Ma S, et al. A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater Des 2016;96:10-5.  DOI
               89.      Wang Z, Qiu W, Yang Y, Liu C. Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple
                   principal elements. Intermetallics 2015;64:63-9.  DOI
               90.      Viennois R, Bérardan D, Popescu C. Crystal structure, lattice dynamics, and thermodynamic properties of a thermoelectric
   125   126   127   128   129   130   131   132   133   134   135