Page 130 - Read Online
P. 130
Page 16 of 17 Liu et al. J Mater Inf 2023;3:17 https://dx.doi.org/10.20517/jmi.2023.19
58. Pelaccio DG, El-Genk MS, Butt DP. A review of carbide fuel corrosion for nuclear thermal propulsion applications. Am Inst Phys
1994;301:905-18. DOI
59. Wu XZ, Wei GL, Guo X. Study on preparation technology and performance mechanism of multi-component (U,Zr,Nb)C fuel. Sci
.
Technol At Energy 2023;9:1-9. (in Chinese) Available from: http://kns.cnki.net/kcms/detail/11.2044.tl.20230626.1905.008.html [Last
accessed on 15 Aug 2023]
60. Butt DP, Wallace TC. The U-Zr-C ternary phase diagram above 2473 K. J Am Ceram Soc 1993;76:1409-19. DOI
61. Bourgeois L, Dehaudt P, Lemaignan C, Hammou A. Factors governing microstructure development of Cr O -doped UO during
2 3 2
sintering. J Nucl Mater 2001;297:313-26. DOI
62. Koroteev AS. Nuclear propulsion system application in the space exploration. In: The 10th International Burn and Combustion
Summit (2003).
63. Tian F, Lin DY, Gao X, Zhao YF, Song HF. Erratum: “a structural modeling approach to solid solutions based on the similar atomic
environment” [J. Chem. Phys. 153, 034101 (2020)]. J Chem Phys 2020;153:034101. DOI PubMed
64. Song H, Tian F, Hu Q, et al. Local lattice distortion in high-entropy alloys. Phys Rev Mater 2017;1:023404. DOI
65. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B
1996;54:11169-86. DOI PubMed
66. Blöchl PE. Projector augmented-wave method. Phys Rev B 1994;50:17953-79. DOI PubMed
67. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8. DOI PubMed
68. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13:5188-92. DOI
69. Methfessel M, Paxton AT. High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 1989;40:3616-21. DOI
PubMed
70. Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 1994;49:16223-33.
DOI PubMed
71. Murnaghan FD. The Compressibility of media under extreme pressures. Proc Natl Acad Sci U S A 1944;30:244-7. DOI PubMed
PMC
72. Nakashima PN, Smith AE, Etheridge J, Muddle BC. The bonding electron density in aluminum. Science 2011;331:1583-6. DOI
PubMed
73. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst
2011;44:1272-6. DOI
74. Ma D, Grabowski B, Körmann F, Neugebauer J, Raabe D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy:
importance of entropy contributions beyond the configurational one. Acta Mater 2015;100:90-7. DOI
75. Song H, Liu H. Modified mean-field potential approach to thermodynamic properties of a low-symmetry crystal: beryllium as a
prototype. Phys Rev B 2007;75:245126. DOI
76. Wang Y, Li L. Mean-field potential approach to thermodynamic properties of metal: Al as a prototype. Phys Rev B 2000;62:196-202.
DOI
77. Wang Y, Xu Y, Liu Y, et al. First-principles study of the role of surface in the heavy-fermion compound CeRh Si . Phys Rev B
2 2
2021;103:165140. DOI
78. Wu J, Yang Z, Xian J, Gao X, Lin D, Song H. Structural and thermodynamic properties of the high-entropy alloy AlCoCrFeNi based
on first-principles calculations. Front Mater 2020;7:590143. DOI
79. Wu J, Wang YC, Liu Y, et al. First-principles study on the electronic structure transition of β-UH 3 under high pressure. Matter Radiat
Extrem 2022;7:058402. DOI
80. Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. J Geophys Res
1978;83:1257-68. DOI
81. Ye B, Wen T, Nguyen MC, Hao L, Wang C, Chu Y. First-principles study, fabrication and characterization of (Zr Nb Ti V )C
0.25 0.25 0.25 0.25
high-entropy ceramics. Acta Mater 2019;170:15-23. DOI
82. Jiang S, Shao L, Fan T, Duan J, Chen X, Tang B. Elastic and thermodynamic properties of high entropy carbide (HfTaZrTi)C and
(HfTaZrNb)C from ab initio investigation. Ceram Int 2020;46:15104-12. DOI
83. Maibam J, Indrajit Sharma B, Bhattacharjee R, Thapa R, Brojen Singh R. Electronic structure and elastic properties of scandium
carbide and yttrium carbide: a first principles study. Phys B Condens Matter 2011;406:4041-5. DOI
84. Korir K, Amolo G, Makau N, Joubert D. First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides
in the rocksalt, zincblende and wurtzite structures. Diam Relat Mater 2011;20:157-64. DOI
85. Shi H, Zhang P, Li S, Sun B, Wang B. Electronic structures and mechanical properties of uranium monocarbide from first-principles
LDA + U and GGA + U calculations. Phys Lett A 2009;373:3577-81. DOI
86. Mei Z, Ye B, Yacout AM, Beeler B, Gao Y. First-principles study of the surface properties of uranium carbides. J Nucl Mater
2020;542:152257. DOI
87. Isaev EI, Simak SI, Abrikosov IA, et al. Phonon related properties of transition metals, their carbides, and nitrides: a first-principles
study. J Appl Phys 2007;101:123519. DOI
88. Zhao Y, Qiao J, Ma S, et al. A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater Des 2016;96:10-5. DOI
89. Wang Z, Qiu W, Yang Y, Liu C. Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple
principal elements. Intermetallics 2015;64:63-9. DOI
90. Viennois R, Bérardan D, Popescu C. Crystal structure, lattice dynamics, and thermodynamic properties of a thermoelectric