Page 128 - Read Online
P. 128

Page 14 of 17                           Liu et al. J Mater Inf 2023;3:17  https://dx.doi.org/10.20517/jmi.2023.19

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Nisar A, Zhang C, Boesl B, Agarwal A. A perspective on challenges and opportunities in developing high entropy-ultra high
                   temperature ceramics. Ceram Int 2020;46:25845-53.  DOI
               2.       Akrami S, Edalati P, Fuji M, Edalati K. High-entropy ceramics: review of principles, production and applications. Mater Sci Eng R
                   Rep 2021;146:100644.  DOI
               3.       Demirskyi D, Borodianska H, Suzuki TS, Sakka Y, Yoshimi K, Vasylkiv O. High-temperature flexural strength performance of ternary
                   high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scr Mater 2019;164:12-6.  DOI
               4.       Golla BR, Mukhopadhyay A, Basu B, Thimmappa SK. Review on ultra-high temperature boride ceramics. Prog Mater Sci
                   2020;111:100651.  DOI
               5.       Peters AB, Zhang D, Nagle DC, Spicer JB. Reactive two-step additive manufacturing of ultra-high temperature carbide ceramics. Addit
                   Manuf 2023;61:103318.  DOI
               6.       Ni D, Cheng Y, Zhang J, et al. Advances in ultra-high temperature ceramics, composites, and coatings. J Adv Ceram 2022;11:1-56.
                   DOI
               7.       Dai F, Wen B, Sun Y, Ren Y, Xiang H, Zhou Y. Grain boundary segregation induced strong UHTCs at elevated temperatures: a
                   universal mechanism from conventional UHTCs to high entropy UHTCs. J Mater Sci Technol 2022;123:26-33.  DOI
               8.       Guo R, Mao H, Shen P. Ultra-fast high-temperature synthesis and densification of high-entropy diborides and diboride-carbide
                   ceramics. J Eur Ceram Soc 2023;43:5763-73.  DOI
               9.       Morris BA, Povolny SJ, Seidel GD, Tallon C. Effects of oxidation on the effective thermomechanical properties of porous ultra-high
                   temperature ceramics in compression via computational micromechanics and MPM. Open Ceram 2023;15:100382.  DOI
               10.     Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater 2020;5:295-309.  DOI
               11.      Wei X, Liu J, Li F, Qin Y, Liang Y, Zhang G. High entropy carbide ceramics from different starting materials. J Eur Ceram
                   Soc 2019;39:2989-94.  DOI
               12.      Zhou J, Zhang J, Zhang F, Niu B, Lei L, Wang W. High-entropy carbide: a novel class of multicomponent ceramics. Ceram Int
                   2018;44:22014-8.  DOI
               13.      Yan X, Constantin L, Lu Y, Silvain J, Nastasi M, Cui B. (Hf Zr Ta Nb Ti )C high-entropy ceramics with low thermal
                                                                       0.2
                                                                          0.2
                                                                    0.2
                                                              0.2
                                                                 0.2
                   conductivity. J Am Ceram Soc 2018;101:4486-91.  DOI
               14.      Zeng Y, Wang D, Xiong X, et al. Ablation-resistant carbide Zr Ti C 0.74 B  0.26  for oxidizing environments up to 3,000 °C. Nat
                                                                 0.2
                                                              0.8
                   Commun 2017;8:15836.  DOI  PubMed  PMC
               15.      Csanádi T, Castle E, Reece MJ, Dusza J. Strength enhancement and slip behaviour of high-entropy carbide grains during micro-
                   compression. Sci Rep 2019;9:10200.  DOI  PubMed  PMC
               16.      Wang F, Yan X, Wang T, et al. Irradiation damage in (Zr  Ta  Nb  Ti  )C high-entropy carbide ceramics. Acta Mater
                                                            0.25  0.25  0.25  0.25
                   2020;195:739-49.  DOI
               17.      Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and
                         †
                   outcomes . Adv Eng Mater 2004;6:299-303.  DOI
               18.      Ma J, Huang C. High entropy energy storage materials: synthesis and application. J Energy Storage 2023;66:107419.  DOI
               19.      Ying T, Yu T, Qi Y, Chen X, Hosono H. High entropy van der Waals materials. Adv Sci 2022;9:e2203219.  DOI  PubMed  PMC
               20.      Moghaddam A, Fereidonnejad R, Cabot A. Semi-ordered high entropy materials: the case of high entropy intermetallic compounds. J
                   Alloys Compd 2023;960:170802.  DOI
               21.      Yao G, Wang W, Li P, et al. Electronic structures and strengthening mechanisms of superhard high-entropy diborides. Rare Met
                   2023;42:614-28.  DOI
               22.      Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun
                   2018;9:4980.  DOI  PubMed  PMC
               23.      Yao G, Wang WY, Zou C, et al. Local orders, lattice distortions, and electronic structure dominated mechanical properties of
                   (ZrHfTaM1M2)C (M = Nb, Ti, V). J Am Ceram Soc 2022;105:4260-76.  DOI
               24.      Dai F, Wen B, Sun Y, Xiang H, Zhou Y. Theoretical prediction on thermal and mechanical properties of high entropy (Zr Hf Ti Nb 0.2 Ta 0.2 )C
                                                                                            0.2
                                                                                                 0.2
                                                                                               0.2
                   by deep learning potential. J Mater Sci Technol 2020;43:168-74.  DOI
               25.      Kaufmann K, Maryanovsky D, Mellor WM, et al. Discovery of high-entropy ceramics via machine learning. npj Comput Mater
                   2020;6:42.  DOI
               26.      Chen L, Chen Z, Yao X, et al. High-entropy alloy catalysts: high-throughput and machine learning-driven design. J Mater Inf
                   2022;2:19.  DOI
               27.      Zhou Y, Zhang Z, Wang D, et al. New trends in additive manufacturing of high-entropy alloys and alloy design by machine learning:
                   from single-phase to multiphase systems. J Mater Inf 2022;2:18.  DOI
               28.     Chen Z, Yang Y. Data-driven design of eutectic high entropy alloys. J Mater Inf 2023;3:10.  DOI
               29.      Pak AY, Sotskov V, Gumovskaya AA, et al. Machine learning-driven synthesis of TiZrNbHfTaC  high-entropy carbide. npj Comput
                                                                                   5
                   Mater 2023;9:7.  DOI
   123   124   125   126   127   128   129   130   131   132   133