Page 129 - Read Online
P. 129
Liu et al. J Mater Inf 2023;3:17 https://dx.doi.org/10.20517/jmi.2023.19 Page 15 of 17
30. Castle E, Csanádi T, Grasso S, Dusza J, Reece M. Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep
2018;8:8609. DOI PubMed PMC
31. Dusza J, Švec P, Girman V, et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. J Eur
Ceram Soc 2018;38:4303-7. DOI
32. Xiong K, You L, Zhang S, et al. Pressure and temperature effects on (TiZrTa)C medium-entropy carbide from first-principles. J Mater
Res Technol 2023;23:2288-300. DOI
33. Jin C, Xiong K, Guo L, et al. A DFT insight into the mechanical, electronic and thermodynamic properties of (TiZrHf)C medium-
entropy carbide ceramic. Results Phys 2022;35:105341. DOI
34. Demirskyi D, Suzuki TS, Yoshimi K, Vasylkiv O. Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C
using the spark plasma consolidation of carbide powders. Open Ceram 2020;2:100015. DOI
35. Demirskyi D, Nishimura T, Suzuki TS, Sakka Y, Vasylkiv O, Yoshimi K. High-temperature toughening in ternary medium-
entropy (Ta Ti Zr )C carbide consolidated using spark-plasma sintering. J Asian Ceram Soc 2020;8:1262-70. DOI
1/3 1/3 1/3
36. Peng C, Tang H, He Y, et al. A novel non-stoichiometric medium-entropy carbide stabilized by anion vacancies. J Mater Sci Technol
2020;51:161-6. DOI
37. Deng H, Xie Z, Wang M, et al. A nanocrystalline AlCoCuNi medium-entropy alloy with high thermal stability via entropy and
boundary engineering. Mater Sci Eng A 2020;774:138925. DOI
38. Chen H, Xiang H, Dai F, et al. High porosity and low thermal conductivity high entropy (Zr Hf Ti Nb Ta )C. J Mater Sci
0.2
0.2
0.2
0.2
0.2
Technol 2019;35:1700-5. DOI
39. Peng C, Gao X, Wang M, et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high
toughness and low thermal diffusivity. Appl Phys Lett 2019;114:011905. DOI
40. Wang Y, Csanádi T, Zhang H, Dusza J, Reece MJ, Zhang R. Enhanced Hardness in high-entropy carbides through atomic
randomness. Adv Theory Simul 2020;3:2000111. DOI
41. Ye B, Wen T, Chu Y. High-temperature oxidation behavior of (Hf Zr Ta Nb Ti )C high-entropy ceramics in air. J Am Ceram
0.2 0.2 0.2 0.2 0.2
Soc 2020;103:500-7. DOI
42. Wang Y, Zhang R, Zhang B, et al. The role of multi-elements and interlayer on the oxidation behaviour of (Hf-Ta-Zr-Nb)C high
entropy ceramics. Corros Sci 2020;176:109019. DOI
43. Levack DJ, Horton JF, Jennings T, et al. Evolution of low enriched uranium nuclear thermal propulsion vehicle and engine design. In:
AIAA Propulsion and Energy 2019 Forum; 2019 Aug 19-22; Indianapolis, IN, USA. American Institute of Aeronautics and
Astronautics, Inc.; 2019. p. 3943. DOI
44. Reynolds CB, Horton JF, Joyner CR, Kokan T, Levack DJ. Applications of nuclear thermal propulsion to lunar architectures. In:
AIAA Propulsion and Energy 2019 Forum; 2019 Aug 19-22; Indianapolis, IN, USA. American Institute of Aeronautics and
Astronautics, Inc.; 2019. p. 4032. DOI
45. Ji Y, Zhang H, Sun J, Shi L. Thermal performance optimization of a fuel element in particle bed reactors for nuclear thermal
propulsion. Nucl Eng Des 2019;355:110316. DOI
46. Reynolds CB, Joyner CR, Kokan TS, Levack DJ, Muzek BJ. Mars opposition missions using nuclear thermal propulsion. In: AIAA
Propulsion and Energy 2020 Forum; 2020 Aug 24-28; virtual event. American Institute of Aeronautics and Astronautics, Inc.; 2020. p.
3850. DOI
47. Burns D, Johnson S. Nuclear thermal propulsion reactor materials. In: Nuclear Materials. IntechOpen; 2021. Available from: https://
www.intechopen.com/chapters/71396. [Last accessed on 16 Aug 2023].
48. Lin CS, Youinou GJ. Design and analysis of a 250 MW plate-fuel reactor for nuclear thermal propulsion. Available from: https://www.
osti.gov/biblio/1638498. [Last accessed on 15 Aug 2023].
49. Thody A. Irradiation capsule development for composite fuels for nuclear thermal propulsion. Available from: https://ir.library.
oregonstate.edu/concern/graduate_thesis_or_dissertations/6395wd417. [Last accessed on 15 Aug 2023]
50. Searight WT, Palomares KB, Werner JE, Todosow M, Lenox KE. Subscale maturation of advanced reactor technologies (SMART): a
path forward for nuclear thermal propulsion fuel and reactor development. Prog Nucl Energy 2022;153:104432. DOI
51. Wang SB, Ma Y, Guo SM, Xie QL . Comparation and analysis of nuclear thermal propulsion reactor fuel. Manned Spaceflight 2018;
24:784-95. (in Chinese). Available from: http://www.cnki.net/kcms/doi/10.16329/j.cnki.zrht.2018.06.012.html. [Last accessed on 15 Aug 2023].
52. Farhadizadeh AR, Ghomi H. Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature ceramics using
first principle methods. Mater Res Express 2020;7:036502. DOI
53. Tsuppayakorn-aek P, Ektarawong A, Sukmas W, Alling B, Bovornratanaraks T. Thermodynamic stability and superconductivity of
tantalum carbides from first-principles cluster expansion and isotropic Eliashberg theory. Comput Mater Sci 2022;202:111004. DOI
54. Di Y, He Z, Wang J. New insights into the mechanical and thermal properties of UN C from first-principles calculations. J Nucl
x
1-x
Mater 2022;571:153991. DOI
55. Gökbulut M, Koç H, Bölükdemir MH, Eser E. Analytical study of the heat capacity and entropy of ZrM (M=N and C) compounds. Int
J Mod Phys B 2023;2450276. DOI
56. He R, Fang L, Han T, et al. Elasticity, mechanical and thermal properties of polycrystalline hafnium carbide and tantalum carbide at
high pressure. J Eur Ceram Soc 2022;42:5220-8. DOI
57. Yang XY, Lu Y, Zheng FW, Zhang P. Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-
principles calculations. Chin Phys B 2015;24:116301. DOI