Page 129 - Read Online
P. 129

Liu et al. J Mater Inf 2023;3:17  https://dx.doi.org/10.20517/jmi.2023.19        Page 15 of 17

               30.      Castle E, Csanádi T, Grasso S, Dusza J, Reece M. Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep
                   2018;8:8609.  DOI  PubMed  PMC
               31.      Dusza J, Švec P, Girman V, et al. Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level. J Eur
                   Ceram Soc 2018;38:4303-7.  DOI
               32.      Xiong K, You L, Zhang S, et al. Pressure and temperature effects on (TiZrTa)C medium-entropy carbide from first-principles. J Mater
                   Res Technol 2023;23:2288-300.  DOI
               33.      Jin C, Xiong K, Guo L, et al. A DFT insight into the mechanical, electronic and thermodynamic properties of (TiZrHf)C medium-
                   entropy carbide ceramic. Results Phys 2022;35:105341.  DOI
               34.      Demirskyi D, Suzuki TS, Yoshimi K, Vasylkiv O. Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C
                   using the spark plasma consolidation of carbide powders. Open Ceram 2020;2:100015.  DOI
               35.      Demirskyi D, Nishimura T, Suzuki TS, Sakka Y, Vasylkiv O, Yoshimi K. High-temperature toughening in ternary medium-
                   entropy (Ta Ti Zr )C carbide consolidated using spark-plasma sintering. J Asian Ceram Soc 2020;8:1262-70.  DOI
                           1/3  1/3  1/3
               36.      Peng C, Tang H, He Y, et al. A novel non-stoichiometric medium-entropy carbide stabilized by anion vacancies. J Mater Sci Technol
                   2020;51:161-6.  DOI
               37.      Deng H, Xie Z, Wang M, et al. A nanocrystalline AlCoCuNi medium-entropy alloy with high thermal stability via entropy and
                   boundary engineering. Mater Sci Eng A 2020;774:138925.  DOI
               38.      Chen H, Xiang H, Dai F, et al. High porosity and low thermal conductivity high entropy (Zr Hf Ti Nb Ta )C. J Mater Sci
                                                                                              0.2
                                                                                        0.2
                                                                                           0.2
                                                                                     0.2
                                                                                  0.2
                   Technol 2019;35:1700-5.  DOI
               39.      Peng C, Gao X, Wang M, et al. Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high
                   toughness and low thermal diffusivity. Appl Phys Lett 2019;114:011905.  DOI
               40.      Wang Y, Csanádi T, Zhang H, Dusza J, Reece MJ, Zhang R. Enhanced Hardness in high-entropy carbides through atomic
                   randomness. Adv Theory Simul 2020;3:2000111.  DOI
               41.      Ye B, Wen T, Chu Y. High-temperature oxidation behavior of (Hf Zr Ta Nb Ti )C high-entropy ceramics in air. J Am Ceram
                                                              0.2  0.2  0.2  0.2  0.2
                   Soc 2020;103:500-7.  DOI
               42.      Wang Y, Zhang R, Zhang B, et al. The role of multi-elements and interlayer on the oxidation behaviour of (Hf-Ta-Zr-Nb)C high
                   entropy ceramics. Corros Sci 2020;176:109019.  DOI
               43.      Levack DJ, Horton JF, Jennings T, et al. Evolution of low enriched uranium nuclear thermal propulsion vehicle and engine design. In:
                   AIAA Propulsion and Energy 2019 Forum; 2019 Aug 19-22; Indianapolis, IN, USA. American Institute of Aeronautics and
                   Astronautics, Inc.; 2019. p. 3943.  DOI
               44.      Reynolds CB, Horton JF, Joyner CR, Kokan T, Levack DJ. Applications of nuclear thermal propulsion to lunar architectures. In:
                   AIAA Propulsion and Energy 2019 Forum; 2019 Aug 19-22; Indianapolis, IN, USA. American Institute of Aeronautics and
                   Astronautics, Inc.; 2019. p. 4032.  DOI
               45.      Ji Y, Zhang H, Sun J, Shi L. Thermal performance optimization of a fuel element in particle bed reactors for nuclear thermal
                   propulsion. Nucl Eng Des 2019;355:110316.  DOI
               46.      Reynolds CB, Joyner CR, Kokan TS, Levack DJ, Muzek BJ. Mars opposition missions using nuclear thermal propulsion. In: AIAA
                   Propulsion and Energy 2020 Forum; 2020 Aug 24-28; virtual event. American Institute of Aeronautics and Astronautics, Inc.; 2020. p.
                   3850.  DOI
               47.      Burns D, Johnson S. Nuclear thermal propulsion reactor materials. In: Nuclear Materials. IntechOpen; 2021. Available from: https://
                   www.intechopen.com/chapters/71396. [Last accessed on 16 Aug 2023].
               48.      Lin CS, Youinou GJ. Design and analysis of a 250 MW plate-fuel reactor for nuclear thermal propulsion. Available from: https://www.
                   osti.gov/biblio/1638498. [Last accessed on 15 Aug 2023].
               49.      Thody A. Irradiation capsule development for composite fuels for nuclear thermal propulsion. Available from: https://ir.library.
                   oregonstate.edu/concern/graduate_thesis_or_dissertations/6395wd417. [Last accessed on 15 Aug 2023]
               50.      Searight WT, Palomares KB, Werner JE, Todosow M, Lenox KE. Subscale maturation of advanced reactor technologies (SMART): a
                   path forward for nuclear thermal propulsion fuel and reactor development. Prog Nucl Energy 2022;153:104432.  DOI
               51.      Wang SB, Ma Y, Guo SM, Xie QL . Comparation and analysis of nuclear thermal propulsion reactor fuel. Manned Spaceflight 2018;
                   24:784-95. (in Chinese). Available from: http://www.cnki.net/kcms/doi/10.16329/j.cnki.zrht.2018.06.012.html. [Last accessed on 15 Aug 2023].
               52.      Farhadizadeh AR, Ghomi H. Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature ceramics using
                   first principle methods. Mater Res Express 2020;7:036502.  DOI
               53.      Tsuppayakorn-aek P, Ektarawong A, Sukmas W, Alling B, Bovornratanaraks T. Thermodynamic stability and superconductivity of
                   tantalum carbides from first-principles cluster expansion and isotropic Eliashberg theory. Comput Mater Sci 2022;202:111004.  DOI
               54.      Di Y, He Z, Wang J. New insights into the mechanical and thermal properties of UN C  from first-principles calculations. J Nucl
                                                                              x
                                                                            1-x
                   Mater 2022;571:153991.  DOI
               55.      Gökbulut M, Koç H, Bölükdemir MH, Eser E. Analytical study of the heat capacity and entropy of ZrM (M=N and C) compounds. Int
                   J Mod Phys B 2023;2450276.  DOI
               56.      He R, Fang L, Han T, et al. Elasticity, mechanical and thermal properties of polycrystalline hafnium carbide and tantalum carbide at
                   high pressure. J Eur Ceram Soc 2022;42:5220-8.  DOI
               57.      Yang XY, Lu Y, Zheng FW, Zhang P. Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-
                   principles calculations. Chin Phys B 2015;24:116301.  DOI
   124   125   126   127   128   129   130   131   132   133   134