Page 48 - Read Online
P. 48

Chen et al. J Mater Inf 2022;2:19  https://dx.doi.org/10.20517/jmi.2022.23       Page 21 of 21

               77.      Vecchio KS, Dippo OF, Kaufmann KR, Liu X. High-throughput rapid experimental alloy development (HT-READ). Acta Mater
                   2021;221:117352.  DOI
               78.      Yao Y, Huang Z, Li T, et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc Natl Acad Sci U S A
                   2020;117:6316-22.  DOI  PubMed  PMC
               79.      Shi Y, Yang B, Rack PD, Guo S, Liaw PK, Zhao Y. High-throughput synthesis and corrosion behavior of sputter-deposited
                   nanocrystalline Al (CoCrFeNi)   combinatorial high-entropy alloys. Mater Des 2020;195:109018.  DOI
                               x       100-x
               80.      Batchelor TAA, Löffler T, Xiao B, et al. Complex-solid-solution electrocatalyst discovery by computational prediction and high-
                   throughput experimentation*. Angew Chem Int Ed Engl 2021;60:6932-7.  DOI  PubMed  PMC
               81.      Banko L, Krysiak OA, Pedersen JK, et al. Unravelling composition-activity-stability trends in high entropy alloy electrocatalysts by
                   using a data-guided combinatorial synthesis strategy and computational modeling. Adv Energy Mater 2022;12:2103312.  DOI
               82.      Yang Z, Gao W. Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv Sci
                   (Weinh) 2022;9:e2106043.  DOI  PubMed  PMC
               83.      Gao W, Chen Y, Li B, Liu SP, Liu X, Jiang Q. Determining the adsorption energies of small molecules with the intrinsic properties of
                   adsorbates and substrates. Nat Commun 2020;11:1196.  DOI  PubMed  PMC
               84.      Pedersen JK, Clausen CM, Krysiak OA, et al. Bayesian optimization of high-entropy alloy compositions for electrocatalytic oxygen
                   reduction*. Angew Chem Int Ed Engl 2021;60:24144-52.  DOI  PubMed  PMC
               85.      Zhong M, Tran K, Min Y, et al. Accelerated discovery of CO  electrocatalysts using active machine learning. Nature 2020;581:178-83.
                                                          2
                   DOI  PubMed
               86.      Pedersen JK, Batchelor TAA, Bagger A, Rossmeisl J. High-entropy alloys as catalysts for the CO  and CO reduction reactions. ACS
                                                                                   2
                   Catal 2020;10:2169-76.  DOI
               87.      Tran K, Ulissi ZW. Active learning across intermetallics to guide discovery of electrocatalysts for CO  reduction and H  evolution. Nat
                                                                                     2          2
                   Catal 2018;1:696-703.  DOI
               88.      Li Z, Ma X, Xin H. Feature engineering of machine-learning chemisorption models for catalyst design. Catal Today 2017;280:232-8.
                   DOI
               89.      Huang B, von Lilienfeld OA. Quantum machine learning using atom-in-molecule-based fragments selected on the fly. Nat Chem
                   2020;12:945-51.  DOI  PubMed
               90.      Li X, Chiong R, Hu Z, Cornforth D, Page AJ. Improved representations of heterogeneous carbon reforming catalysis using machine
                   learning. J Chem Theory Comput 2019;15:6882-94.  DOI  PubMed
               91.      Bartók AP, Kondor R, Csányi G. On representing chemical environments. Phys Rev B 2013:87.  DOI
               92.      Back S, Yoon J, Tian N, Zhong W, Tran K, Ulissi ZW. Convolutional neural network of atomic surface structures to predict binding
                   energies for high-throughput screening of catalysts. J Phys Chem Lett 2019;10:4401-8.  DOI  PubMed
               93.      Gu GH, Noh J, Kim S, Back S, Ulissi Z, Jung Y. Practical deep-learning representation for fast heterogeneous catalyst screening. J
                   Phys Chem Lett 2020;11:3185-91.  DOI  PubMed
               94.      Christensen AS, Bratholm LA, Faber FA, Anatole von Lilienfeld O. FCHL revisited: faster and more accurate quantum machine
                   learning. J Chem Phys 2020;152:044107.  DOI  PubMed
               95.      Li X, Chiong R, Page AJ. Group and period-based representations for improved machine learning prediction of heterogeneous alloy
                   catalysts. J Phys Chem Lett 2021;12:5156-62.  DOI  PubMed
               96.      Li X, Li B, Yang Z, Chen Z, Gao W, Jiang Q. A transferable machine-learning scheme from pure metals to alloys for predicting
                   adsorption energies. J Mater Chem A 2022;10:872-80.  DOI
               97.      Fu M, Ma X, Zhao K, Li X, Su D. High-entropy materials for energy-related applications. iScience 2021;24:102177.  DOI  PubMed
                   PMC
               98.      Wang D, Chen Z, Wu Y, et al. Structurally ordered high-entropy intermetallic nanoparticles with enhanced C-C bond cleavage for
                   ethanol oxidation. SmartMat 2022.  DOI
               99.      Feng G, Ning F, Song J, et al. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen
                   evolution. J Am Chem Soc 2021;143:17117-27.  DOI  PubMed
   43   44   45   46   47   48   49   50   51   52   53