Page 46 - Read Online
P. 46

Chen et al. J Mater Inf 2022;2:19  https://dx.doi.org/10.20517/jmi.2022.23       Page 19 of 21

                   2004;375-377:213-8.  DOI
               15.      Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and
                   outcomes. Adv Eng Mater 2004;6:299-303.  DOI
               16.      Cheng C, Zhang X, Haché MJR, Zou Y. Phase transition and nanomechanical properties of refractory high-entropy alloy thin films:
                   effects of co-sputtering Mo and W on a TiZrHfNbTa system. Nanoscale 2022;14:7561-8.  DOI  PubMed
               17.      Cheng C, Zhang X, Haché MJR, Zou Y. Magnetron co-sputtering synthesis and nanoindentation studies of nanocrystalline (TiZrHf)
                                                                                                         x
                   (NbTa)  high-entropy alloy thin films. Nano Res 2022;15:4873-9.  DOI
                        1-x
               18.      Xin Y, Li S, Qian Y, et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal
                   2020;10:11280-306.  DOI
               19.      Ma Y, Ma Y, Wang Q, et al. High-entropy energy materials: challenges and new opportunities. Energy Environ Sci 2021;14:2883-905.
                   DOI
               20.      Xie P, Yao Y, Huang Z, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat Commun
                   2019;10:4011.  DOI  PubMed  PMC
               21.      Mori K, Hashimoto N, Kamiuchi N, Yoshida H, Kobayashi H, Yamashita H. Hydrogen spillover-driven synthesis of high-entropy
                   alloy nanoparticles as a robust catalyst for CO  hydrogenation. Nat Commun 2021;12:3884.  DOI  PubMed  PMC
                                                 2
               22.      Wang D, Chen Z, Huang Y, et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci
                   China Mater 2021;64:2454-66.  DOI
               23.      Wu D, Kusada K, Nanba Y, et al. Noble-metal high-entropy-alloy nanoparticles: atomic-level insight into the electronic structure. J
                   Am Chem Soc 2022;144:3365-9.  DOI  PubMed
               24.      Li H, Han Y, Zhao H, et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat
                   Commun 2020;11:5437.  DOI  PubMed  PMC
               25.      Chen ZW, Chen L, Gariepy Z, Yao X, Singh CV. High-throughput and machine-learning accelerated design of high entropy alloy
                   catalysts. Trends Chem 2022;4:577-9.  DOI
               26.      Haché MJ, Cheng C, Zou Y. Nanostructured high-entropy materials. J Mater Res 2020;35:1051-75.  DOI
               27.      Wan X, Zhang Z, Niu H, et al. Machine-learning-accelerated catalytic activity predictions of transition metal phthalocyanine dual-
                   metal-site catalysts for CO reduction. J Phys Chem Lett 2021;12:6111-8.  DOI  PubMed
                                    2
               28.      Chen ZW, Lu Z, Chen LX, Jiang M, Chen D, Singh CV. Machine-learning-accelerated discovery of single-atom catalysts based on
                   bidirectional activation mechanism. Chem Catal 2021;1:183-95.  DOI
               29.      Zafari M, Kumar D, Umer M, Kim KS. Machine learning-based high throughput screening for nitrogen fixation on boron-doped single
                   atom catalysts. J Mater Chem A 2020;8:5209-16.  DOI
               30.      Deng C, Su Y, Li F, Shen W, Chen Z, Tang Q. Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by
                   DFT studies and machine-learning. J Mater Chem A 2020;8:24563-71.  DOI
               31.      Wan X, Zhang Z, Yu W, Niu H, Wang X, Guo Y. Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts
                   for the oxygen reduction reaction. Patterns (N Y) 2022;3:100553.  DOI  PubMed  PMC
               32.      Roy D, Mandal SC, Pathak B. Machine learning assisted exploration of high entropy alloy-based catalysts for selective CO  reduction
                                                                                                   2
                   to methanol. J Phys Chem Lett 2022;13:5991-6002.  DOI  PubMed
               33.      Nandy A, Duan C, Taylor MG, Liu F, Steeves AH, Kulik HJ. Computational discovery of transition-metal complexes: from high-
                   throughput screening to machine learning. Chem Rev 2021;121:9927-10000.  DOI  PubMed
               34.      Rodríguez-Martínez X, Pascual-San-José E, Campoy-Quiles M. Accelerating organic solar cell material’s discovery: high-throughput
                   screening and big data. Energy Environ Sci 2021;14:3301-22.  DOI  PubMed  PMC
               35.      Conway PL, Klaver T, Steggo J, Ghassemali E. High entropy alloys towards industrial applications: high-throughput screening and
                   experimental investigation. Mater Sci Eng A 2022;830:142297.  DOI
               36.      Miracle D, Majumdar B, Wertz K, Gorsse S. New strategies and tests to accelerate discovery and development of multi-principal
                   element structural alloys. Scr Mater 2017;127:195-200.  DOI
               37.      Mannodi-kanakkithodi A, Chan MK. Computational data-driven materials discovery. Trends Chem 2021;3:79-82.  DOI
               38.      Huang E, Lee W, Singh SS, et al. Machine-learning and high-throughput studies for high-entropy materials. Mater Sci Eng R Rep
                   2022;147:100645.  DOI
               39.      Lederer Y, Toher C, Vecchio KS, Curtarolo S. The search for high entropy alloys: a high-throughput ab-initio approach. Acta Mater
                   2018;159:364-83.  DOI
               40.      Ångqvist M, Muñoz WA, Rahm JM, et al. ICET - a python library for constructing and sampling alloy cluster expansions. Adv Theory
                   Simul 2019;2:1900015.  DOI
               41.      van de Walle A, Tiwary P, de Jong M, et al. Efficient stochastic generation of special quasirandom structures. Calphad 2013;42:13-8.
                   DOI
               42.      de Walle A, Asta M, Ceder G. The alloy theoretic automated toolkit: a user guide. Calphad 2002;26:539-53.  DOI
               43.      Okhotnikov K, Charpentier T, Cadars S. Supercell program: a combinatorial structure-generation approach for the local-level modeling
                   of atomic substitutions and partial occupancies in crystals. J Cheminform 2016;8:17.  DOI  PubMed  PMC
               44.      Zunger A, Wei S, Ferreira LG, Bernard JE. Special quasirandom structures. Phys Rev Lett 1990;65:353-6.  DOI  PubMed
               45.      Feugmo CG, Ryczko K, Anand A, Singh CV, Tamblyn I. Neural evolution structure generation: high entropy alloys. J Chem Phys
                   2021;155:044102.  DOI  PubMed
   41   42   43   44   45   46   47   48   49   50   51