Page 47 - Read Online
P. 47

Page 20 of 21                         Chen et al. J Mater Inf 2022;2:19  https://dx.doi.org/10.20517/jmi.2022.23

               46.      Li B, Li X, Gao W, Jiang Q. An effective scheme to determine surface energy and its relation with adsorption energy. Acta Mater
                   2021;212:116895.  DOI
               47.      Sharma M, Jang J, Shin DY, et al. Work function-tailored graphene via transition metal encapsulation as a highly active and durable
                   catalyst for the oxygen reduction reaction. Energy Environ Sci 2019;12:2200-11.  DOI
               48.      Duong T, Wang Y, Yan X, Couet A, Chaudhuri S. A first-principles-based approach to the high-throughput screening of corrosion-
                   resistant high entropy alloys. arXiv preprint arXiv 2021;2104:10590.  DOI
               49.      Abild-Pedersen F, Greeley J, Studt F, et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-
                   metal surfaces. Phys Rev Lett 2007;99:016105.  DOI  PubMed
               50.      Nørskov J, Bligaard T, Logadottir A, et al. Universality in heterogeneous catalysis. J Catal 2002;209:275-8.  DOI  PubMed
               51.      Kuhl KP, Cave ER, Abram DN, Jaramillo TF. New insights into the electrochemical reduction of carbon dioxide on metallic copper
                   surfaces. Energy Environ Sci 2012;5:7050.  DOI
               52.      Chen ZW, Gao W, Zheng WT, Jiang Q. Steric hindrance in sulfur vacancy of monolayer MoS  boosts electrochemical reduction of
                                                                                 2
                   carbon monoxide to methane. ChemSusChem 2018;11:1455-9.  DOI  PubMed
               53.      Roy D, Mandal SC, Pathak B. Machine learning-driven high-throughput screening of alloy-based catalysts for selective CO
                                                                                                         2
                   hydrogenation to methanol. ACS Appl Mater Inter 2021;13:56151-63.  DOI  PubMed
               54.      Singh AR, Rohr BA, Schwalbe JA, et al. Electrochemical ammonia synthesis - the selectivity challenge. ACS Catal 2017;7:706-9.
                   DOI
               55.      Chen Z, Lang XY, Jiang Q. Discovery of cobweb-like MoC  and its application for nitrogen fixation. J Mater Chem A 2018;6:9623-8.
                                                          6
                   DOI
               56.      Saidi WA, Shadid W, Veser G. Optimization of high-entropy alloy catalyst for ammonia decomposition and ammonia synthesis. J
                   Phys Chem Lett 2021;12:5185-92.  DOI  PubMed
               57.      Montoya JH, Tsai C, Vojvodic A, Nørskov JK. The challenge of electrochemical ammonia synthesis: a new perspective on the role of
                   nitrogen scaling relations. ChemSusChem 2015;8:2180-6.  DOI  PubMed
               58.      Skúlason E, Bligaard T, Gudmundsdóttir S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N reduction.
                                                                                                   2
                   Phys Chem Chem Phys 2012;14:1235-45.  DOI  PubMed
               59.      Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B
                   2004;108:17886-92.  DOI
               60.      Batchelor TA, Pedersen JK, Winther SH, Castelli IE, Jacobsen KW, Rossmeisl J. High-entropy alloys as a discovery platform for
                   electrocatalysis. Joule 2019;3:834-45.  DOI
               61.      Lu Z, Chen ZW, Singh CV. Neural network-assisted development of high-entropy alloy catalysts: decoupling ligand and coordination
                   effects. Matter 2020;3:1318-33.  DOI
               62.      Saidi WA. Emergence of local scaling relations in adsorption energies on high-entropy alloys. NPJ Comput Mater 2022:8.  DOI
               63.      McCullough K, Williams T, Mingle K, Jamshidi P, Lauterbach J. High-throughput experimentation meets artificial intelligence: a new
                   pathway to catalyst discovery. Phys Chem Chem Phys 2020;22:11174-96.  DOI  PubMed
               64.      Shukla S, Wang T, Frank M, et al. Friction stir gradient alloying: a novel solid-state high throughput screening technique for high
                   entropy alloys. Mater Today Commun 2020;23:100869.  DOI
               65.      Zhu C, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning. J Mater Res
                   Technol 2021;11:2336-53.  DOI
               66.      Coury FG, Wilson P, Clarke KD, Kaufman MJ, Clarke AJ. High-throughput solid solution strengthening characterization in high
                   entropy alloys. Acta Mater 2019;167:1-11.  DOI
               67.      Moorehead M, Bertsch K, Niezgoda M, et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive
                   manufacturing. Mater Des 2020;187:108358.  DOI
               68.      Pegues JW, Melia MA, Puckett R, Whetten SR, Argibay N, Kustas AB. Exploring additive manufacturing as a high-throughput
                   screening tool for multiphase high entropy alloys. Addit Manuf 2021;37:101598.  DOI
               69.      Dobbelstein H, George EP, Gurevich EL, Kostka A, Ostendorf A, Laplanche G. Laser metal deposition of refractory high-entropy
                   alloys for high-throughput synthesis and structure-property characterization. Int J Extrem Manuf 2021;3:015201.  DOI
               70.      Li M, Gazquez J, Borisevich A, Mishra R, Flores KM. Evaluation of microstructure and mechanical property variations in Al
                                                                                                         x
                   CoCrFeNi high entropy alloys produced by a high-throughput laser deposition method. Intermetallics 2018;95:110-8.  DOI
               71.      Li M, Flores KM. Laser processing as a high-throughput method to investigate microstructure-processing-property relationships in
                   multiprincipal element alloys. J Alloys Compd 2020;825:154025.  DOI
               72.      Zhao L, Jiang L, Yang L, et al. High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys. J Mater Sci
                   Technol 2022;110:269-82.  DOI
               73.      Xu Y, Bu Y, Liu J, Wang H. In-situ high throughput synthesis of high-entropy alloys. Scr Mater 2019;160:44-7.  DOI
               74.      Zhu B, Alavi S, Cheng C, et al. Fast and High-throughput synthesis of medium- and high-entropy alloys using radio frequency
                   inductively coupled plasma. Adv Eng Mater 2021;23:2001116.  DOI
               75.      Huang  J,  Shi  H,  Ma  Y,  Yin  H,  Wang  D.  A  combinatorial  electrode  for  high-throughput,  high-entropy  alloy  screening.
                   ChemElectroChem 2021;8:4573-9.  DOI
               76.      Matsubara M, Suzumura A, Ohba N, Asahi R. Identifying superionic conductors by materials informatics and high-throughput
                   synthesis. Commun Mater 2020:1.  DOI
   42   43   44   45   46   47   48   49   50   51   52