Page 27 - Read Online
P. 27

Zhou et al. J Mater Inf 2022;2:18  https://dx.doi.org/10.20517/jmi.2022.27       Page 21 of 21

               114.      Wen C, Zhang Y, Wang C et al. Machine learning assisted design of high entropy alloys with desired property. Acta Mater
                    2019;170:109-17.  DOI
               115.      Yang C, Ren C, Jia Y, Wang G, Li M, Lu W. A machine learning-based alloy design system to facilitate the rational design of high
                    entropy alloys with enhanced hardness. Acta Mater 2022;222:117431.  DOI
               116.      Bhandari U, Rafi MR, Zhang C, Yang S. Yield strength prediction of high-entropy alloys using machine learning. Mater Today
                    Commun 2021;26:101871.  DOI
               117.      Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting: a review. Chin J Mech Eng 2017;30:515-27.  DOI
               118.      Zhou Y, Zhang Z, Wang Y et al. Selective laser melting of typical metallic materials: an effective process prediction model developed
                    by energy absorption and consumption analysis. Addit Manuf 2019;25:204-17.  DOI
               119.      Xiong W. Additive manufacturing as a tool for high-throughput experimentation. J Mater Inf 2022;2:12.  DOI
               120.      Westphal E, Seitz H. A machine learning method for defect detection and visualization in selective laser sintering based on
                    convolutional neural networks. Addit Manuf 2021;41:101965.  DOI
               121.      Chen Y, Wang H, Wu Y, Wang H. Predicting the printability in selective laser melting with a supervised machine learning method.
                    Materials 2020;13:5063.  DOI  PubMed  PMC
               122.      Park HS, Nguyen DS, Le-Hong T, Van Tran X. Machine learning-based optimization of process parameters in selective laser melting
                    for biomedical applications. J Intell Manuf 2022;33:1843-58.  DOI
               123.      Zheng L, Schmitz G, Meng Y, Chellali R, Schlesiger R. Mechanism of intermediate temperature embrittlement of Ni and Ni-based
                    superalloys. Crit Rev Solid State Mater Sci 2012;37:181-214.  DOI
               124.      Yang T, Zhao Y, Fan L et al. Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in
                    multicomponent high-entropy alloys. Acta Mater 2020;189:47-59.  DOI
               125.      Cao B, Wei D, Zhang X et al. Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: the role of
                    heterogeneous strain distribution and environmentally assisted intergranular damage. Mater Today Phys 2022;24:100653.  DOI
               126.      Tong Z, Liu H, Jiao J, Zhou W, Yang Y, Ren X. Laser additive manufacturing of CrMnFeCoNi high entropy alloy: microstructural
                    evolution, high-temperature oxidation behavior and mechanism. Opt Laser Technol 2020;130:106326.  DOI
               127.      Zhong X, Gallagher B, Liu S, Kailkhura B, Hiszpanski A, Han T. Explainable machine learning in materials science. NPJ Comput
                    Mater 2022;8:1-19.  DOI
   22   23   24   25   26   27   28   29   30   31   32