Page 23 - Read Online
P. 23

Zhou et al. J Mater Inf 2022;2:18  https://dx.doi.org/10.20517/jmi.2022.27       Page 17 of 21

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2022.


               REFERENCES
               1.       Yeh JW, Chen SK, Lin SJ et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and
                    outcomes. Adv Eng Mater 2004;6:299-303.  DOI
               2.       Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A
                    2004;375:213-8.  DOI
               3.       Ritchie RO, Zheng XR. Growing designability in structural materials. Nat Mater 2022;21:968-70.  DOI  PubMed
               4.       Ye Y, Wang Q, Lu J, Liu C, Yang Y. High-entropy alloy: challenges and prospects. Mater Today 2016;19:349-62.  DOI
               5.       Zhao Y, Qiao J, Ma S et al. A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater Des 2016;96:10-5.  DOI
               6.       Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys.
                    Science 2018;362:933-7.  DOI  PubMed
               7.       Lu Y, Dong Y, Guo S et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 2014;4:1-5.  DOI
                    PubMed  PMC
               8.       He F, Wang Z, Cheng P et al. Designing eutectic high entropy alloys of CoCrFeNiNb . J Alloys Compd 2016;656:284-9.  DOI
                                                                           x
               9.       Kuznetsov AV, Shaysultanov DG, Stepanov ND, Salishchev GA, Senkov ON. Tensile properties of an AlCrCuNiFeCo high-entropy
                    alloy in as-cast and wrought conditions. Mater Sci Eng A 2012;533:107-18.  DOI
               10.       Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W. High-entropy alloys with a hexagonal close-packed structure designed by equi-
                    atomic alloy strategy and binary phase diagrams. JOM 2014;66:1984-92.  DOI
               11.       Yu P, Zhang L, Ning J et al. Pressure-induced phase transitions in HoDyYGdTb high-entropy alloy. Mater Lett 2017;196:137-40.
                    DOI
               12.       Zhang Y, Zuo TT, Tang Z et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci 2014;61:1-93.  DOI
               13.       Guo L, Ou X, Ni S, Liu Y, Song M. Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy
                    alloys. Mater Sci Eng A 2019;746:356-62.  DOI
               14.       Cheng H, Wang H, Xie Y, Tang Q, Dai P. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy:
                    microstructure and mechanical properties. Mater Sci Technol 2017;33:2032-9.  DOI
               15.       Zheng M, Li C, Zhang X, Ye Z, Yang X, Gu J. The influence of columnar to equiaxed transition on deformation behavior of
                    FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition. Addit Manuf 2021;37:101660.  DOI
               16.       Gali A, George EP. Tensile properties of high-and medium-entropy alloys. Intermetallics 2013;39:74-8.  DOI
               17.       Liu B, Wang J, Liu Y et al. Microstructure and mechanical properties of equimolar FeCoCrNi high entropy alloy prepared via powder
                    extrusion. Intermetallics 2016;75:25-30.  DOI
               18.       Lin D, Xu L, Han Y et al. Structure and mechanical properties of a FeCoCrNi high-entropy alloy fabricated via selective laser
                    melting. Intermetallics 2020;127:106963.  DOI
               19.       Peng Y, Jia C, Song L et al. The manufacturing process optimization and the mechanical properties of FeCoCrNi high entropy alloys
                    fabricated by selective laser melting. Intermetallics 2022;145:107557.  DOI
               20.       Lin D, Xu L, Jing H, Han Y, Zhao L, Minami F. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-
                    entropy alloy fabricated via selective laser melting. Addit Manuf 2020;32:101058.  DOI
               21.       Xiong F, Fu R, Li Y, Xu B, Qi X. Influences of nitrogen alloying on microstructural evolution and tensile properties of CoCrFeMnNi
                    high-entropy alloy treated by cold-rolling and subsequent annealing. Mater Sci Eng A 2020;787:139472.  DOI
               22.       He J, Liu W, Wang H et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy
                    alloy system. Acta Mater 2014;62:105-13.  DOI
               23.       Yan X, Guo H, Yang W et al. Al Cr FeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties. J
                                         0.3
                                            x
                    Alloys Compd 2021;860:158436. DOI
               24.       Zhang J, Qiu H, Zhu H, Xie Z. Effect of Al additions on the microstructures and tensile properties of Al CoCr Fe Ni high entropy
                                                                                         x   3  5
                    alloys. Mater Charact 2021;175:111091.  DOI
               25.       Jin X, Liang Y, Zhang L, Bi J, Zhou Y, Li B. Back stress strengthening dual-phase AlCoCr FeNi  high entropy alloy with outstanding
                                                                              2   2
   18   19   20   21   22   23   24   25   26   27   28