Page 26 - Read Online
P. 26

Page 20 of 21                         Zhou et al. J Mater Inf 2022;2:18  https://dx.doi.org/10.20517/jmi.2022.27

                    by selective laser melting and post heat treatment. Addit Manuf 2020;36:101601.  DOI
               85.       Fujieda T, Chen M, Shiratori H et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive
                    manufactured using selective laser melting. Addit Manuf 2019;25:412-20.  DOI
               86.       Fujieda T, Shiratori H, Kuwabara K et al. CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion
                    resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater
                    Lett 2017;189:148-51.  DOI
               87.       Wu Y, Zhao X, Chen Q et al. Strengthening and fracture mechanisms of a precipitation hardening high-entropy alloy fabricated by
                    selective laser melting. Virtual Phys Prototyp 2022;17:451-67.  DOI
               88.       Yao N, Lu T, Feng K et al. Ultrastrong and ductile additively manufactured precipitation-hardening medium-entropy alloy at ambient
                    and cryogenic temperatures. Acta Mater 2022;236:118142.  DOI
               89.       Mu Y, He L, Deng S et al. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility. Acta Mater
                    2022;232:117975.  DOI
               90.       Chen J, Zhou X, Wang W et al. A review on fundamental of high entropy alloys with promising high-temperature properties. J Alloys
                    Compd 2018;760:15-30.  DOI
               91.       Su Y, Luo S, Wang Z. Microstructure evolution and cracking behaviors of additively manufactured AlxCrCuFeNi  high entropy
                                                                                                2
                    alloys via selective laser melting. J Alloys Compd 2020;842:155823.  DOI
               92.       Zhao D, Yang Q, Wang D et al. Ordered nitrogen complexes overcoming strength-ductility trade-off in an additively manufactured
                    high-entropy alloy. Virtual Phys Prototyp 2020;15:532-42.  DOI
               93.       Ghayoor M, Lee K, He Y, Chang C-h, Paul BK, Pasebani S. Selective laser melting of austenitic oxide dispersion strengthened steel:
                    processing, microstructural evolution and strengthening mechanisms. Mater Sci Eng A 2020;788:139532.  DOI
               94.       Lee H, Jung JE, Kang D-S et al. Oxide dispersion strengthened IN718 owing to powder reuse in selective laser melting. Mater Sci
                    Eng A 2022;832:142369.  DOI
               95.       Rittinghaus S-K, Wilms MB. Oxide dispersion strengthening of γ-TiAl by laser additive manufacturing. J Alloys Compd
                    2019;804:457-60.  DOI
               96.       Kim Y-K, Baek M-S, Yang S, Lee K-A. In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively
                    manufactured CoCrFeMnNi high-entropy alloy. Addit Manuf 2021;38:101832.  DOI
               97.       Kim Y-K, Yang S, Lee K-A. Compressive creep behavior of selective laser melted CoCrFeMnNi high-entropy alloy strengthened by
                    in-situ formation of nano-oxides. Addit Manuf 2020;36:101543.  DOI
               98.       Kim Y-K, Ahn J-E, Song Y, Choi H, Yang S, Lee K-A. Selective laser melted CrMnFeCoNi + 3 wt% Y O  high-entropy alloy matrix
                                                                                       2  3
                    nanocomposite: fabrication, microstructure and nanoindentation properties. Intermetallics 2021;138:107319.  DOI
               99.       Kocks U, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 2003;48:171-273.  DOI
               100.      LaRosa CR, Shih M, Varvenne C, Ghazisaeidi M. Solid solution strengthening theories of high-entropy alloys. Mater Charact
                    2019;151:310-7.  DOI
               101.      Ishimoto T, Ozasa R, Nakano K et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by
                    selective laser melting, and its improved mechanical property and biocompatibility. Scr Mater 2021;194:113658.  DOI
               102.      Zhang Y, Chen X, Jayalakshmi S, Singh RA, Deev VB, Prusov ES. Factors determining solid solution phase formation and stability
                    in CoCrFeNiX  (X = Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing. J Alloys Compd
                              0.4
                    2021;857:157625.  DOI
               103.      Agrawal P, Thapliyal S, Nene S, Mishra R, McWilliams B, Cho K. Excellent strength-ductility synergy in metastable high entropy
                    alloy by laser powder bed additive manufacturing. Addit Manuf 2020;32:101098.  DOI
               104.      Song X, Guo K, Lu H, Liu D, Tang F. Integrating computational materials science and materials informatics for the modeling of
                    phase stability. J Mater Inf 2021;1:7.  DOI
               105.      Xi S, Yu J, Bao L et al. Machine learning-accelerated first-principles predictions of the stability and mechanical properties of L1 -
                                                                                                         2
                    strengthened cobalt-based superalloys. J Mater Inf 2022;2:15.  DOI
               106.      Yang Y, Zhao L, Han C-X et al. Taking materials dynamics to new extremes using machine learning interatomic potentials. J Mater
                    Inf 2021;1:10.  DOI
               107.      Liu Y, Wang J, Xiao B, Shu J. Accelerated development of hard high-entropy alloys with data-driven high-throughput experiments. J
                    Mater Inf 2022;2:3.  DOI
               108.      Yu J, Xi S, Pan S et al. Machine learning-guided design and development of metallic structural materials. J Mater Inf 2021;1:9.  DOI
               109.      Huang W, Martin P, Zhuang HL. Machine-learning phase prediction of high-entropy alloys. Acta Mater 2019;169:225-36.  DOI
                    PubMed  PMC
               110.      Krishna YV, Jaiswal UK, Rahul M. Machine learning approach to predict new multiphase high entropy alloys. Scr Mater
                    2021;197:113804.  DOI
               111.      Zhou Z, Zhou Y, He Q, Ding Z, Li F, Yang Y. Machine learning guided appraisal and exploration of phase design for high entropy
                    alloys. NPJ Comput Mater 2019;5:1-9.  DOI
               112.      Zhang Y, Wen C, Wang C et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine
                    learning models. Acta Mater 2020;185:528-39.  DOI
               113.      Lee SY, Byeon S, Kim HS, Jin H, Lee S. Deep learning-based phase prediction of high-entropy alloys: optimization, generation, and
                    explanation. Mater Des 2021;197:109260.  DOI
   21   22   23   24   25   26   27   28   29   30   31