Page 26 - Read Online
P. 26
Page 20 of 21 Zhou et al. J Mater Inf 2022;2:18 https://dx.doi.org/10.20517/jmi.2022.27
by selective laser melting and post heat treatment. Addit Manuf 2020;36:101601. DOI
85. Fujieda T, Chen M, Shiratori H et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive
manufactured using selective laser melting. Addit Manuf 2019;25:412-20. DOI
86. Fujieda T, Shiratori H, Kuwabara K et al. CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion
resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Mater
Lett 2017;189:148-51. DOI
87. Wu Y, Zhao X, Chen Q et al. Strengthening and fracture mechanisms of a precipitation hardening high-entropy alloy fabricated by
selective laser melting. Virtual Phys Prototyp 2022;17:451-67. DOI
88. Yao N, Lu T, Feng K et al. Ultrastrong and ductile additively manufactured precipitation-hardening medium-entropy alloy at ambient
and cryogenic temperatures. Acta Mater 2022;236:118142. DOI
89. Mu Y, He L, Deng S et al. A high-entropy alloy with dislocation-precipitate skeleton for ultrastrength and ductility. Acta Mater
2022;232:117975. DOI
90. Chen J, Zhou X, Wang W et al. A review on fundamental of high entropy alloys with promising high-temperature properties. J Alloys
Compd 2018;760:15-30. DOI
91. Su Y, Luo S, Wang Z. Microstructure evolution and cracking behaviors of additively manufactured AlxCrCuFeNi high entropy
2
alloys via selective laser melting. J Alloys Compd 2020;842:155823. DOI
92. Zhao D, Yang Q, Wang D et al. Ordered nitrogen complexes overcoming strength-ductility trade-off in an additively manufactured
high-entropy alloy. Virtual Phys Prototyp 2020;15:532-42. DOI
93. Ghayoor M, Lee K, He Y, Chang C-h, Paul BK, Pasebani S. Selective laser melting of austenitic oxide dispersion strengthened steel:
processing, microstructural evolution and strengthening mechanisms. Mater Sci Eng A 2020;788:139532. DOI
94. Lee H, Jung JE, Kang D-S et al. Oxide dispersion strengthened IN718 owing to powder reuse in selective laser melting. Mater Sci
Eng A 2022;832:142369. DOI
95. Rittinghaus S-K, Wilms MB. Oxide dispersion strengthening of γ-TiAl by laser additive manufacturing. J Alloys Compd
2019;804:457-60. DOI
96. Kim Y-K, Baek M-S, Yang S, Lee K-A. In-situ formed oxide enables extraordinary high-cycle fatigue resistance in additively
manufactured CoCrFeMnNi high-entropy alloy. Addit Manuf 2021;38:101832. DOI
97. Kim Y-K, Yang S, Lee K-A. Compressive creep behavior of selective laser melted CoCrFeMnNi high-entropy alloy strengthened by
in-situ formation of nano-oxides. Addit Manuf 2020;36:101543. DOI
98. Kim Y-K, Ahn J-E, Song Y, Choi H, Yang S, Lee K-A. Selective laser melted CrMnFeCoNi + 3 wt% Y O high-entropy alloy matrix
2 3
nanocomposite: fabrication, microstructure and nanoindentation properties. Intermetallics 2021;138:107319. DOI
99. Kocks U, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 2003;48:171-273. DOI
100. LaRosa CR, Shih M, Varvenne C, Ghazisaeidi M. Solid solution strengthening theories of high-entropy alloys. Mater Charact
2019;151:310-7. DOI
101. Ishimoto T, Ozasa R, Nakano K et al. Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by
selective laser melting, and its improved mechanical property and biocompatibility. Scr Mater 2021;194:113658. DOI
102. Zhang Y, Chen X, Jayalakshmi S, Singh RA, Deev VB, Prusov ES. Factors determining solid solution phase formation and stability
in CoCrFeNiX (X = Al, Nb, Ta) high entropy alloys fabricated by powder plasma arc additive manufacturing. J Alloys Compd
0.4
2021;857:157625. DOI
103. Agrawal P, Thapliyal S, Nene S, Mishra R, McWilliams B, Cho K. Excellent strength-ductility synergy in metastable high entropy
alloy by laser powder bed additive manufacturing. Addit Manuf 2020;32:101098. DOI
104. Song X, Guo K, Lu H, Liu D, Tang F. Integrating computational materials science and materials informatics for the modeling of
phase stability. J Mater Inf 2021;1:7. DOI
105. Xi S, Yu J, Bao L et al. Machine learning-accelerated first-principles predictions of the stability and mechanical properties of L1 -
2
strengthened cobalt-based superalloys. J Mater Inf 2022;2:15. DOI
106. Yang Y, Zhao L, Han C-X et al. Taking materials dynamics to new extremes using machine learning interatomic potentials. J Mater
Inf 2021;1:10. DOI
107. Liu Y, Wang J, Xiao B, Shu J. Accelerated development of hard high-entropy alloys with data-driven high-throughput experiments. J
Mater Inf 2022;2:3. DOI
108. Yu J, Xi S, Pan S et al. Machine learning-guided design and development of metallic structural materials. J Mater Inf 2021;1:9. DOI
109. Huang W, Martin P, Zhuang HL. Machine-learning phase prediction of high-entropy alloys. Acta Mater 2019;169:225-36. DOI
PubMed PMC
110. Krishna YV, Jaiswal UK, Rahul M. Machine learning approach to predict new multiphase high entropy alloys. Scr Mater
2021;197:113804. DOI
111. Zhou Z, Zhou Y, He Q, Ding Z, Li F, Yang Y. Machine learning guided appraisal and exploration of phase design for high entropy
alloys. NPJ Comput Mater 2019;5:1-9. DOI
112. Zhang Y, Wen C, Wang C et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine
learning models. Acta Mater 2020;185:528-39. DOI
113. Lee SY, Byeon S, Kim HS, Jin H, Lee S. Deep learning-based phase prediction of high-entropy alloys: optimization, generation, and
explanation. Mater Des 2021;197:109260. DOI