Page 25 - Read Online
P. 25
Zhou et al. J Mater Inf 2022;2:18 https://dx.doi.org/10.20517/jmi.2022.27 Page 19 of 21
55. Perrin AE, Schuh CA. Stabilized nanocrystalline alloys: the intersection of grain boundary segregation with processing science. Annu
Rev Mater Res 2021;51:241-68. DOI
56. Zhu Y, Zhang K, Meng Z et al. Ultrastrong nanotwinned titanium alloys through additive manufacturing. Nat Mater2022;21:1258-62.
DOI PubMed
57. Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform 2014;23:1917-28. DOI
58. Li M-X, Sun Y-T, Wang C et al. Data-driven discovery of a universal indicator for metallic glass forming ability. Nat Mater
2022;21:165-72. DOI PubMed
59. Zhu Z, Nguyen Q, Ng F et al. Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy
additively manufactured by selective laser melting. Scr Mater 2018;154:20-4. DOI
60. Li R, Niu P, Yuan T, Cao P, Chen C, Zhou K. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy:
processability, non-equilibrium microstructure and mechanical property. J Alloys Compd 2018;746:125-34. DOI
61. Guo L, Gu J, Gan B et al. Effects of elemental segregation and scanning strategy on the mechanical properties and hot cracking of a
selective laser melted FeCoCrNiMn-(N, Si) high entropy alloy. J Alloys Compd 2021;865:158892. DOI
62. Zhang C, Feng K, Kokawa H, Han B, Li Z. Cracking mechanism and mechanical properties of selective laser melted CoCrFeMnNi
high entropy alloy using different scanning strategies. Mater Sci Eng A 2020;789:139672. DOI
63. Lin D, Xi X, Li X et al. High-temperature mechanical properties of FeCoCrNi high-entropy alloys fabricated via selective laser
melting. Mater Sci Eng A 2022;832:142354. DOI
64. Brif Y, Thomas M, Todd I. The use of high-entropy alloys in additive manufacturing. Scr Mater 2015;99:93-6. DOI
65. Zhou P, Xiao D, Wu Z, Ou X. Al FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy
0.5
powders. Mater Sci Eng A 2019;739:86-9. DOI
66. Xu J, Duan R, Feng K et al. Enhanced strength and ductility of laser powder bed fused NbMoTaW refractory high-entropy alloy via
carbon microalloying. Addit Manuf Lett 2022;3:100079. DOI
67. Zhang H, Zhao Y, Cai J et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase
via laser additive manufacturing. Mater Des 2021;201:109462. DOI
68. Yang F, Wang L, Wang Z et al. Ultra strong and ductile eutectic high entropy alloy fabricated by selective laser melting. J Mater Sci
Technol 2022;106:128-32. DOI
69. He L, Wu S, Dong A et al. Selective laser melting of dense and crack-free AlCoCrFeNi eutectic high entropy alloy: synergizing
2.1
strength and ductility. J Mater Sci Technol 2022;117:133-45. DOI
70. Wang S, Li Y, Zhang D, Yang Y, Manladan SM, Luo Z. Microstructure and mechanical properties of high strength AlCoCrFeNi
2.1
eutectic high entropy alloy prepared by selective laser melting (SLM). Mater Lett 2022;310:131511. DOI
71. Luo S, Su Y, Wang Z. Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-
entropy alloy via selective laser melting. Sci China Mater 2020;63:1279-90. DOI
72. Luo S, Zhao C, Su Y, Liu Q, Wang Z. Selective laser melting of dual phase AlCrCuFeNi high entropy alloys: formability,
x
heterogeneous microstructures and deformation mechanisms. Addit Manuf 2020;31:100925. DOI
73. Nguyen T, Huang M, Li H, Tran V, Yang S. Microstructure and tensile properties of duplex phase Al FeMnNiCrCu high entropy
0.25 0.5
alloy fabricated by laser melting deposition. J Alloys Compd 2021;871:159521. DOI
74. Guo Y, Su H, Zhou H et al. Unique strength-ductility balance of AlCoCrFeNi eutectic high entropy alloy with ultra-fine duplex
2.1
microstructure prepared by selective laser melting. J Mater Sci Technol 2022;111:298-306. DOI
75. Zhou R, Liu Y, Liu B, Li J, Fang Q. Precipitation behavior of selective laser melted FeCoCrNiC high entropy alloy. Intermetallics
0.05
2019;106:20-5. DOI
76. Wu W, Zhou R, Wei B, Ni S, Liu Y, Song M. Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi
high-entropy alloy fabricated by selective laser melting. Mater Charact 2018;144:605-10. DOI
77. Kim Y-K, Yu J-H, Kim HS, Lee K-A. In-situ carbide-reinforced CoCrFeMnNi high-entropy alloy matrix nanocomposites
manufactured by selective laser melting: carbon content effects on microstructure, mechanical properties, and deformation
mechanism. Compos B Eng 2021;210:108638. DOI
78. Zhu Z, An X, Lu W et al. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical
properties in an interstitial solute strengthened high entropy alloy. Mater Res Lett 2019;7:453-9. DOI
79. Park JM, Choe J, Kim JG et al. Superior tensile properties of 1% C-CoCrFeMnNi high-entropy alloy additively manufactured by
selective laser melting. Mater Res Lett 2020;8:1-7. DOI
80. Chen H, Lu T, Wang Y et al. Laser additive manufacturing of nano-TiC particles reinforced CoCrFeMnNi high-entropy alloy matrix
composites with high strength and ductility. Mater Sci Eng A 2022;833:142512. DOI
81. Li B, Zhang L, Xu Y, Liu Z, Qian B, Xuan F. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with
nano-TiN particles for additive manufacturing and strength enhancement: process, particle behavior and effects. Powder Technol
2020;360:509-21. DOI
82. Li B, Qian B, Xu Y, Liu Z, Xuan F. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle
reinforcements via selective laser melting assisted additive manufacturing. Mater. lett. 2019;252:88-91. DOI
83. Chen P, Yang C, Li S, Attallah MM, Yan M. In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy
fabricated via laser powder bed fusion. Mater Des 2020;194:108966. DOI
84. Lin W-C, Chang Y-J, Hsu T-H et al. Microstructure and tensile property of a precipitation strengthened high entropy alloy processed