Page 24 - Read Online
P. 24

Page 18 of 21                         Zhou et al. J Mater Inf 2022;2:18  https://dx.doi.org/10.20517/jmi.2022.27

                    tensile properties. Mater Sci Eng A 2019;745:137-43.  DOI
               26.       Jin X, Zhou Y, Zhang L, Du X, Li B. A novel Fe Co Ni Al  eutectic high entropy alloy with excellent tensile properties. Mater
                                                    20  20  41  19
                    Lett 2018;216:144-6.  DOI
               27.       Bhattacharjee T, Zheng R, Chong Y et al. Effect of low temperature on tensile properties of AlCoCrFeNi  eutectic high entropy
                                                                                          2.1
                    alloy. Mater Chem Phys 2018;210:207-12.  DOI
               28.       Chen X, Xie W, Zhu J et al. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi  eutectic high
                                                                                                2.1
                    entropy alloy. Intermetallics 2021;128:107024.  DOI
               29.       Vo TD, Tran B, Tieu AK, Wexler D, Deng G, Nguyen C. Effects of oxidation on friction and wear properties of eutectic high-entropy
                    alloy AlCoCrFeNi . Tribol Int 2021;160:107017.  DOI
                                2.1
               30.       Yu Y, He F, Qiao Z, Wang Z, Liu W, Yang J. Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNb
                                                                                                         x
                    eutectic high entropy alloys. J Alloys Compd 2019;775:1376-85.  DOI
               31.       Wu Y, Cai Y, Wang T et al. A refractory Hf Nb Ti Zr  high-entropy alloy with excellent structural stability and tensile properties.
                                                25  25  25  25
                    Mater Lett 2014;130:277-80.  DOI
               32.       Lilensten L, Couzinié J-P, Bourgon J et al. Design and tensile properties of a BCC Ti-rich high-entropy alloy with transformation-
                    induced plasticity. Mater Res Lett 2017;5:110-6.  DOI
               33.       Wang S, Wu M, Shu D, Zhu G, Wang D, Sun B. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at
                    cryogenic temperatures. Acta Mater 2020;201:517-27.  DOI
               34.       Huang H, Sun Y, Cao P et al. On cooling rates dependence of microstructure and mechanical properties of refractory high-entropy
                    alloys HfTaTiZr and HfNbTiZr. Scr Mater 2022;211:114506.  DOI
               35.       Chen Y, Xu Z, Wang M, Li Y, Wu C, Yang Y. A single-phase V Nb ZrTi refractory high-entropy alloy with outstanding tensile
                                                               0.5  0.5
                    properties. Mater Sci Eng A 2020;792:139774.  DOI
               36.       Senkov O, Pilchak A, Semiatin S. Effect of cold deformation and annealing on the microstructure and tensile properties of a
                    HfNbTaTiZr refractory high entropy alloy. Metall Mater Trans A 2018;49:2876-92.  DOI
               37.       Juan C-C, Tsai M-H, Tsai C-W et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain
                    refining. Mater Lett 2016;184:200-3.  DOI
               38.       Zhao Y, Yang T, Tong Y et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based
                    medium-entropy alloy. Acta Mater 2017;138:72-82.  DOI
               39.       Du X, Li W, Chang H et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-
                    entropy alloy. Nat Commun 2020;11:1-7.  DOI  PubMed  PMC
               40.       Zhao Y, Yang T, Zhu J et al. Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr
                    Mater 2018;148:51-5.  DOI
               41.       Fan L, Yang T, Zhao Y et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures.
                    Nat Commun 2020;11:1-8.  DOI  PubMed  PMC
               42.       Yang T, Zhao Y, Luan J et al. Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional
                    strength-ductility synergy. Scr Mater 2019;164:30-5.  DOI
               43.       Zhao Y, Yang T, Li Y et al. Superior high-temperature properties and deformation-induced planar faults in a novel L1 -strengthened
                                                                                                 2
                    high-entropy alloy. Acta Mater 2020;188:517-27.  DOI
               44.       He F, Yang Z, Liu S et al. Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with
                    gigapascal yield strength. Int J Plast 2021;144:103022.  DOI
               45.       He J, Wang H, Huang H et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater
                    2016;102:187-96.  DOI
               46.       Wang Z, Zhou W, Fu L et al. Effect of coherent L1  nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy. Mater
                                                     2
                    Sci Eng A 2017;696:503-10.  DOI
               47.       Zhao Y, Li Y, Yeli G et al. Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense
                    nanoscale precipitates. Acta Mater 2022;223:117480.  DOI
               48.       Liu W, Lu Z, He J et al. Ductile CoCrFeNiMo  high entropy alloys strengthened by hard intermetallic phases. Acta Mater
                                                     x
                    2016;116:332-42.  DOI
               49.       Xiao B, Luan J, Zhao S et al. Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice
                    diffusion. Nat Commun 2022;13:1-8.  DOI  PubMed  PMC
               50.       Anderson IE, White EM, Dehoff R. Feedstock powder processing research needs for additive manufacturing development. Curr Opin
                    Solid State Mater Sci 2018;22:8-15.  DOI
               51.       Zhang Z, Zhou Y, Zhou S, Zhang L, Yan M. Mechanically blended Al: simple but effective approach to improving mechanical
                    property and thermal stability of selective laser-melted Inconel 718. Metall Mater Trans A 2019;50:3922-36.  DOI
               52.       Zhang T, Huang Z, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive
                    manufacturing. Science 2021;374:478-82.  DOI  PubMed
               53.       Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. Int J Adv
                    Manuf Technol 2016;83:389-405.  DOI
               54.       Singh DD, Arjula S, Reddy AR. Functionally graded materials manufactured by direct energy deposition: a review. Mater Today:
                    Proc 2021;47:2450-6.  DOI
   19   20   21   22   23   24   25   26   27   28   29