Page 24 - Read Online
P. 24
Page 18 of 21 Zhou et al. J Mater Inf 2022;2:18 https://dx.doi.org/10.20517/jmi.2022.27
tensile properties. Mater Sci Eng A 2019;745:137-43. DOI
26. Jin X, Zhou Y, Zhang L, Du X, Li B. A novel Fe Co Ni Al eutectic high entropy alloy with excellent tensile properties. Mater
20 20 41 19
Lett 2018;216:144-6. DOI
27. Bhattacharjee T, Zheng R, Chong Y et al. Effect of low temperature on tensile properties of AlCoCrFeNi eutectic high entropy
2.1
alloy. Mater Chem Phys 2018;210:207-12. DOI
28. Chen X, Xie W, Zhu J et al. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi eutectic high
2.1
entropy alloy. Intermetallics 2021;128:107024. DOI
29. Vo TD, Tran B, Tieu AK, Wexler D, Deng G, Nguyen C. Effects of oxidation on friction and wear properties of eutectic high-entropy
alloy AlCoCrFeNi . Tribol Int 2021;160:107017. DOI
2.1
30. Yu Y, He F, Qiao Z, Wang Z, Liu W, Yang J. Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNb
x
eutectic high entropy alloys. J Alloys Compd 2019;775:1376-85. DOI
31. Wu Y, Cai Y, Wang T et al. A refractory Hf Nb Ti Zr high-entropy alloy with excellent structural stability and tensile properties.
25 25 25 25
Mater Lett 2014;130:277-80. DOI
32. Lilensten L, Couzinié J-P, Bourgon J et al. Design and tensile properties of a BCC Ti-rich high-entropy alloy with transformation-
induced plasticity. Mater Res Lett 2017;5:110-6. DOI
33. Wang S, Wu M, Shu D, Zhu G, Wang D, Sun B. Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at
cryogenic temperatures. Acta Mater 2020;201:517-27. DOI
34. Huang H, Sun Y, Cao P et al. On cooling rates dependence of microstructure and mechanical properties of refractory high-entropy
alloys HfTaTiZr and HfNbTiZr. Scr Mater 2022;211:114506. DOI
35. Chen Y, Xu Z, Wang M, Li Y, Wu C, Yang Y. A single-phase V Nb ZrTi refractory high-entropy alloy with outstanding tensile
0.5 0.5
properties. Mater Sci Eng A 2020;792:139774. DOI
36. Senkov O, Pilchak A, Semiatin S. Effect of cold deformation and annealing on the microstructure and tensile properties of a
HfNbTaTiZr refractory high entropy alloy. Metall Mater Trans A 2018;49:2876-92. DOI
37. Juan C-C, Tsai M-H, Tsai C-W et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain
refining. Mater Lett 2016;184:200-3. DOI
38. Zhao Y, Yang T, Tong Y et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based
medium-entropy alloy. Acta Mater 2017;138:72-82. DOI
39. Du X, Li W, Chang H et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-
entropy alloy. Nat Commun 2020;11:1-7. DOI PubMed PMC
40. Zhao Y, Yang T, Zhu J et al. Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr
Mater 2018;148:51-5. DOI
41. Fan L, Yang T, Zhao Y et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures.
Nat Commun 2020;11:1-8. DOI PubMed PMC
42. Yang T, Zhao Y, Luan J et al. Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional
strength-ductility synergy. Scr Mater 2019;164:30-5. DOI
43. Zhao Y, Yang T, Li Y et al. Superior high-temperature properties and deformation-induced planar faults in a novel L1 -strengthened
2
high-entropy alloy. Acta Mater 2020;188:517-27. DOI
44. He F, Yang Z, Liu S et al. Strain partitioning enables excellent tensile ductility in precipitated heterogeneous high-entropy alloys with
gigapascal yield strength. Int J Plast 2021;144:103022. DOI
45. He J, Wang H, Huang H et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater
2016;102:187-96. DOI
46. Wang Z, Zhou W, Fu L et al. Effect of coherent L1 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy. Mater
2
Sci Eng A 2017;696:503-10. DOI
47. Zhao Y, Li Y, Yeli G et al. Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense
nanoscale precipitates. Acta Mater 2022;223:117480. DOI
48. Liu W, Lu Z, He J et al. Ductile CoCrFeNiMo high entropy alloys strengthened by hard intermetallic phases. Acta Mater
x
2016;116:332-42. DOI
49. Xiao B, Luan J, Zhao S et al. Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice
diffusion. Nat Commun 2022;13:1-8. DOI PubMed PMC
50. Anderson IE, White EM, Dehoff R. Feedstock powder processing research needs for additive manufacturing development. Curr Opin
Solid State Mater Sci 2018;22:8-15. DOI
51. Zhang Z, Zhou Y, Zhou S, Zhang L, Yan M. Mechanically blended Al: simple but effective approach to improving mechanical
property and thermal stability of selective laser-melted Inconel 718. Metall Mater Trans A 2019;50:3922-36. DOI
52. Zhang T, Huang Z, Yang T, et al. In situ design of advanced titanium alloy with concentration modulations by additive
manufacturing. Science 2021;374:478-82. DOI PubMed
53. Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. Int J Adv
Manuf Technol 2016;83:389-405. DOI
54. Singh DD, Arjula S, Reddy AR. Functionally graded materials manufactured by direct energy deposition: a review. Mater Today:
Proc 2021;47:2450-6. DOI