Page 83 - Read Online
P. 83

Page 20 of 22  García-Pardo et al. J Cancer Metastasis Treat 2021;7:62  https://dx.doi.org/10.20517/2394-4722.2021.103

               88.       Ma Z, Qin H, Benveniste EN. Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-gamma and IFN-
                    beta: critical role of STAT-1alpha. J Immunol 2001;167:5150-9.  DOI  PubMed
               89.       Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene
                    2002;21:2000-8.  DOI  PubMed
               90.       Chen Z, Han ZC. STAT3: a critical transcription activator in angiogenesis. Med Res Rev 2008;28:185-200.  DOI  PubMed
               91.       Badoux X, Bueso-Ramos C, Harris D, et al. Cross-talk between chronic lymphocytic leukemia cells and bone marrow endothelial
                    cells: role of signal transducer and activator of transcription 3. Hum Pathol 2011;42:1989-2000.  DOI  PubMed  PMC
               92.       Gao P, Niu N, Wei T, et al. The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget
                    2017;8:69139-61.  DOI  PubMed  PMC
               93.       Lozano-Santos C, Martinez-Velasquez J, Fernandez-Cuevas B, et al. Vascular endothelial growth factor A (VEGFA) gene
                    polymorphisms have an impact on survival in a subgroup of indolent patients with chronic lymphocytic leukemia. PLoS One
                    2014;9:e101063.  DOI  PubMed  PMC
               94.       Góra-Tybor J, Szemraj J, Robak T, Jamroziak K. Clinical relevance of vascular endothelial growth factor type A (VEGFA) and
                    VEGF receptor type 2 (VEGFR2) gene polymorphism in chronic lymphocytic leukemia. Blood Cells Mol Dis 2015;54:139-43.  DOI
                    PubMed
               95.       Ballester S, Pineda B, Rodrigues P, Tormo E, Terol MJ, Eroles P. Clinical relevance of +936 C>T VEGFA and c.233C>T bFGF
                    polymorphisms in chronic lymphocytic leukemia. Genes (Basel) 2020;11:686.  DOI  PubMed  PMC
               96.       Martinelli S, Kanduri M, Maffei R, et al. ANGPT2 promoter methylation is strongly associated with gene expression and prognosis in
                    chronic lymphocytic leukemia. Epigenetics 2013;8:720-9.  DOI  PubMed  PMC
               97.       Kopparapu PK, Miranda C, Fogelstrand L, et al. MCPH1 maintains long-term epigenetic silencing of ANGPT2 in chronic
                    lymphocytic leukemia. FEBS J 2015;282:1939-52.  DOI  PubMed
               98.       Martinelli S, Maffei R, Fiorcari S, et al. The expression of endothelin-1 in chronic lymphocytic leukemia is controlled by epigenetic
                    mechanisms and extracellular stimuli. Leuk Res 2017;54:17-24.  DOI  PubMed
               99.       Trimarco V, Ave E, Facco M, et al. Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal
                    cells (MSCs): implications for neoplastic cell survival. Oncotarget 2015;6:42130-49.  DOI  PubMed  PMC
               100.      Mesaros O, Jimbu L, Neaga A, et al. Macrophage polarization in chronic lymphocytic leukemia: nurse-like cells are the caretakers of
                    leukemic cells. Biomedicines 2020;8:516.  DOI  PubMed  PMC
               101.      Fiorcari S, Maffei R, Atene CG, Potenza L, Luppi M, Marasca R. Nurse-like cells and chronic lymphocytic leukemia B cells: a
                    mutualistic crosstalk inside tissue microenvironments. Cells 2021;10:217.  DOI  PubMed  PMC
               102.      Apte RS. Regulation of angiogenesis by macrophages. Adv Exp Med Biol 2010;664:15-9.  DOI  PubMed
               103.      Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor
                    angiogenesis and lymphangiogenesis. Front Physiol 2014;5:75.  DOI  PubMed  PMC
               104.      Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity
                    2014;41:14-20.  DOI  PubMed  PMC
               105.      Jaiswal S, Chao MP, Majeti R, Weissman IL. Macrophages as mediators of tumor immunosurveillance. Trends Immunol
                    2010;31:212-9.  DOI  PubMed  PMC
               106.      Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol
                    2010;11:889-96.  DOI  PubMed
               107.      Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014;41:49-61.  DOI  PubMed  PMC
               108.      Audrito V, Serra S, Brusa D, et al. Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage
                    polarization in chronic lymphocytic leukemia. Blood 2015;125:111-23.  DOI  PubMed
               109.      Jia L, Clear A, Liu FT, et al. Extracellular HMGB1 promotes differentiation of nurse-like cells in chronic lymphocytic leukemia.
                    Blood 2014;123:1709-19.  DOI  PubMed  PMC
               110.      Zajac E, Schweighofer B, Kupriyanova TA, et al. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the
                    levels of TIMP-1 complexed with their secreted proMMP-9. Blood 2013;122:4054-67.  DOI  PubMed  PMC
               111.      Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent
                    catalytic stimulator of angiogenesis. Proc Natl Acad Sci U S A 2007;104:20262-7.  DOI  PubMed  PMC
               112.      Deryugina EI, Zajac E, Juncker-Jensen A, Kupriyanova TA, Welter L, Quigley JP. Tissue-infiltrating neutrophils constitute the major
                    in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia 2014;16:771-88.  DOI  PubMed  PMC
               113.      Seignez C, Phillipson M. The multitasking neutrophils and their involvement in angiogenesis. Curr Opin Hematol 2017;24:3-8.  DOI
                    PubMed
               114.      Christoffersson G, Vågesjö E, Vandooren J, et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces
                    angiogenesis in transplanted hypoxic tissue. Blood 2012;120:4653-62.  DOI  PubMed  PMC
               115.      Massena S, Christoffersson G, Vågesjö E, et al. Identification and characterization of VEGF-A-responsive neutrophils expressing
                    CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 2015;126:2016-26.  DOI  PubMed  PMC
               116.      Manukyan G, Papajik T, Gajdos P, et al. Neutrophils in chronic lymphocytic leukemia are permanently activated and have functional
                    defects. Oncotarget 2017;8:84889-901.  DOI  PubMed  PMC
               117.      Podaza E, Risnik D, Colado A, et al. Chronic lymphocytic leukemia cells increase neutrophils survival and promote their
                                           dim
                    differentiation into CD16 high  CD62L  immunosuppressive subset. Int J Cancer 2019;144:1128-34.  DOI  PubMed
               118.      Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200:373-83.  DOI  PubMed
                    PMC
   78   79   80   81   82   83   84   85   86   87   88