Page 83 - Read Online
P. 83
Page 20 of 22 García-Pardo et al. J Cancer Metastasis Treat 2021;7:62 https://dx.doi.org/10.20517/2394-4722.2021.103
88. Ma Z, Qin H, Benveniste EN. Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-gamma and IFN-
beta: critical role of STAT-1alpha. J Immunol 2001;167:5150-9. DOI PubMed
89. Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene
2002;21:2000-8. DOI PubMed
90. Chen Z, Han ZC. STAT3: a critical transcription activator in angiogenesis. Med Res Rev 2008;28:185-200. DOI PubMed
91. Badoux X, Bueso-Ramos C, Harris D, et al. Cross-talk between chronic lymphocytic leukemia cells and bone marrow endothelial
cells: role of signal transducer and activator of transcription 3. Hum Pathol 2011;42:1989-2000. DOI PubMed PMC
92. Gao P, Niu N, Wei T, et al. The roles of signal transducer and activator of transcription factor 3 in tumor angiogenesis. Oncotarget
2017;8:69139-61. DOI PubMed PMC
93. Lozano-Santos C, Martinez-Velasquez J, Fernandez-Cuevas B, et al. Vascular endothelial growth factor A (VEGFA) gene
polymorphisms have an impact on survival in a subgroup of indolent patients with chronic lymphocytic leukemia. PLoS One
2014;9:e101063. DOI PubMed PMC
94. Góra-Tybor J, Szemraj J, Robak T, Jamroziak K. Clinical relevance of vascular endothelial growth factor type A (VEGFA) and
VEGF receptor type 2 (VEGFR2) gene polymorphism in chronic lymphocytic leukemia. Blood Cells Mol Dis 2015;54:139-43. DOI
PubMed
95. Ballester S, Pineda B, Rodrigues P, Tormo E, Terol MJ, Eroles P. Clinical relevance of +936 C>T VEGFA and c.233C>T bFGF
polymorphisms in chronic lymphocytic leukemia. Genes (Basel) 2020;11:686. DOI PubMed PMC
96. Martinelli S, Kanduri M, Maffei R, et al. ANGPT2 promoter methylation is strongly associated with gene expression and prognosis in
chronic lymphocytic leukemia. Epigenetics 2013;8:720-9. DOI PubMed PMC
97. Kopparapu PK, Miranda C, Fogelstrand L, et al. MCPH1 maintains long-term epigenetic silencing of ANGPT2 in chronic
lymphocytic leukemia. FEBS J 2015;282:1939-52. DOI PubMed
98. Martinelli S, Maffei R, Fiorcari S, et al. The expression of endothelin-1 in chronic lymphocytic leukemia is controlled by epigenetic
mechanisms and extracellular stimuli. Leuk Res 2017;54:17-24. DOI PubMed
99. Trimarco V, Ave E, Facco M, et al. Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal
cells (MSCs): implications for neoplastic cell survival. Oncotarget 2015;6:42130-49. DOI PubMed PMC
100. Mesaros O, Jimbu L, Neaga A, et al. Macrophage polarization in chronic lymphocytic leukemia: nurse-like cells are the caretakers of
leukemic cells. Biomedicines 2020;8:516. DOI PubMed PMC
101. Fiorcari S, Maffei R, Atene CG, Potenza L, Luppi M, Marasca R. Nurse-like cells and chronic lymphocytic leukemia B cells: a
mutualistic crosstalk inside tissue microenvironments. Cells 2021;10:217. DOI PubMed PMC
102. Apte RS. Regulation of angiogenesis by macrophages. Adv Exp Med Biol 2010;664:15-9. DOI PubMed
103. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J. Role of tumor associated macrophages in tumor
angiogenesis and lymphangiogenesis. Front Physiol 2014;5:75. DOI PubMed PMC
104. Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity
2014;41:14-20. DOI PubMed PMC
105. Jaiswal S, Chao MP, Majeti R, Weissman IL. Macrophages as mediators of tumor immunosurveillance. Trends Immunol
2010;31:212-9. DOI PubMed PMC
106. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol
2010;11:889-96. DOI PubMed
107. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014;41:49-61. DOI PubMed PMC
108. Audrito V, Serra S, Brusa D, et al. Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage
polarization in chronic lymphocytic leukemia. Blood 2015;125:111-23. DOI PubMed
109. Jia L, Clear A, Liu FT, et al. Extracellular HMGB1 promotes differentiation of nurse-like cells in chronic lymphocytic leukemia.
Blood 2014;123:1709-19. DOI PubMed PMC
110. Zajac E, Schweighofer B, Kupriyanova TA, et al. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the
levels of TIMP-1 complexed with their secreted proMMP-9. Blood 2013;122:4054-67. DOI PubMed PMC
111. Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent
catalytic stimulator of angiogenesis. Proc Natl Acad Sci U S A 2007;104:20262-7. DOI PubMed PMC
112. Deryugina EI, Zajac E, Juncker-Jensen A, Kupriyanova TA, Welter L, Quigley JP. Tissue-infiltrating neutrophils constitute the major
in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia 2014;16:771-88. DOI PubMed PMC
113. Seignez C, Phillipson M. The multitasking neutrophils and their involvement in angiogenesis. Curr Opin Hematol 2017;24:3-8. DOI
PubMed
114. Christoffersson G, Vågesjö E, Vandooren J, et al. VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces
angiogenesis in transplanted hypoxic tissue. Blood 2012;120:4653-62. DOI PubMed PMC
115. Massena S, Christoffersson G, Vågesjö E, et al. Identification and characterization of VEGF-A-responsive neutrophils expressing
CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 2015;126:2016-26. DOI PubMed PMC
116. Manukyan G, Papajik T, Gajdos P, et al. Neutrophils in chronic lymphocytic leukemia are permanently activated and have functional
defects. Oncotarget 2017;8:84889-901. DOI PubMed PMC
117. Podaza E, Risnik D, Colado A, et al. Chronic lymphocytic leukemia cells increase neutrophils survival and promote their
dim
differentiation into CD16 high CD62L immunosuppressive subset. Int J Cancer 2019;144:1128-34. DOI PubMed
118. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200:373-83. DOI PubMed
PMC