Page 81 - Read Online
P. 81

Page 18 of 22  García-Pardo et al. J Cancer Metastasis Treat 2021;7:62  https://dx.doi.org/10.20517/2394-4722.2021.103

                    leukemia cells and the stromal microenvironment: direct contact, soluble factors, and extracellular vesicles. Front Oncol
                    2020;10:1422.  DOI  PubMed  PMC
               31.       Kay NE, Shanafelt TD, Strege AK, Lee YK, Bone ND, Raza A. Bone biopsy derived marrow stromal elements rescue chronic
                    lymphocytic leukemia B-cells from spontaneous and drug induced cell death and facilitates an "angiogenic switch". Leuk Res
                    2007;31:899-906.  DOI  PubMed  PMC
               32.       Edelmann J, Klein-Hitpass L, Carpinteiro A, et al. Bone marrow fibroblasts induce expression of PI3K/NF-kappaB pathway genes
                    and a pro-angiogenic phenotype in CLL cells. Leuk Res 2008;32:1565-72.  DOI  PubMed
               33.       Maffei R, Fiorcari S, Bulgarelli J, et al. Physical contact with endothelial cells through β1- and β2- integrins rescues chronic
                    lymphocytic leukemia cells from spontaneous and drug-induced apoptosis and induces a peculiar gene expression profile in leukemic
                    cells. Haematologica 2012;97:952-60.  DOI  PubMed  PMC
               34.       Xia Y, Lu RN, Li J. Angiogenic factors in chronic lymphocytic leukemia. Leuk Res 2012;36:1211-7.  DOI  PubMed
               35.       Aguirre Palma LM, Gehrke I, Kreuzer KA. Angiogenic factors in chronic lymphocytic leukaemia (CLL): where do we stand? Crit
                    Rev Oncol Hematol 2015;93:225-36.  DOI  PubMed
               36.       Kay NE, Bone ND, Tschumper RC, et al. B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic
                    molecules. Leukemia 2002;16:911-9.  DOI  PubMed
               37.       Baban D, Murray J, Earl H, Kerr D, Seymour L. Quantitative analysis of vascular endothelial growth factor expression in chronic
                    lymphocytic leukaemia. Int J Oncol ;1996:8:29-34.  PubMed
               38.       Chen H, Treweeke AT, West DC, et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic
                    leukemia cells. Blood 2000;96:3181-7.  PubMed
               39.       Ho CL, Hsu LF, Phyliky RL, Li CY. Autocrine expression of platelet-derived growth factor B in B cell chronic lymphocytic
                    leukemia. Acta Haematol 2005;114:133-40.  DOI  PubMed
               40.       Bauvois B, Dumont J, Mathiot C, Kolb JP. Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by
                    interferons. Leukemia 2002;16:791-8.  DOI  PubMed
               41.       Kamiguti AS, Lee ES, Till KJ, et al. The role of matrix metalloproteinase 9 in the pathogenesis of chronic lymphocytic leukaemia. Br
                    J Haematol 2004;125:128-40.  DOI  PubMed
               42.       Redondo-Muñoz J, Escobar-Díaz E, Samaniego R, Terol MJ, García-Marco JA, García-Pardo A. MMP-9 in B-cell chronic
                    lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to
                    podosomes, and is involved in cell invasion and migration. Blood 2006;108:3143-51.  DOI  PubMed
               43.       Duensing S, Atzpodien J. Increased intracellular and plasma levels of basic fibroblast growth factor in B-cell chronic lymphocytic
                    leukemia. Blood 1995;85:1978-80.  PubMed
               44.       Menzel T, Rahman Z, Calleja E, et al. Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic
                    lymphocytic leukemia and is associated with resistance to fludarabine. Blood 1996;87:1056-63.  PubMed
               45.       Gora-Tybor J, Blonski JZ, Robak T. Circulating proangiogenic cytokines and angiogenesis inhibitor endostatin in untreated patients
                    with chronic lymphocytic leukemia. Mediators Inflamm 2003;12:167-71.  DOI  PubMed  PMC
               46.       Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and
                    pathological conditions. Clin Sci (Lond) 2005;109:227-41.  DOI  PubMed
               47.       Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell
                    Biol 2006;7:359-71.  DOI  PubMed
               48.       Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-
                    and pro-angiogenic therapies. Genes Cancer 2011;2:1097-105.  DOI  PubMed  PMC
               49.       Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669-76.  DOI  PubMed
               50.       Molica S, Vitelli G, Levato D, Gandolfo GM, Liso V. Increased serum levels of vascular endothelial growth factor predict risk of
                    progression in early B-cell chronic lymphocytic leukaemia. Br J Haematol 1999;107:605-10.  DOI  PubMed
               51.       Molica S, Vitelli G, Levato D, Ricciotti A, Digiesi G. Clinicoprognostic implications of increased serum levels of vascular
                    endothelial growth factor and basic fibroblastic growth factor in early B-cell chronic lymphocytic leukaemia. Br J Cancer
                    2002;86:31-5.  DOI  PubMed  PMC
               52.       Ding W, Knox TR, Tschumper RC, et al. Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-
                    derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood
                    2010;116:2984-93.  DOI  PubMed  PMC
               53.       Maffei R, Marasca R, Martinelli S, et al. Angiopoietin-2 expression in B-cell chronic lymphocytic leukemia: association with clinical
                    outcome and immunoglobulin heavy-chain mutational status. Leukemia 2007;21:1312-5.  DOI  PubMed
               54.       Maffei R, Martinelli S, Santachiara R, et al. Angiopoietin-2 plasma dosage predicts time to first treatment and overall survival in
                    chronic lymphocytic leukemia. Blood 2010;116:584-92.  DOI  PubMed
               55.       Vrbacky F, Smolej L, Vroblova V, et al. Angiopoietin-2 mRNA expression is increased in chronic lymphocytic leukemia patients
                    with poor prognostic features. Hematology 2010;15:210-4.  DOI  PubMed
               56.       Molica S, Vitelli G, Levato D, et al. Increased serum levels of matrix metalloproteinase-9 predict clinical outcome of patients with
                    early B-cell chronic lymphocytic leukaemia. Eur J Haematol 2003;70:373-8.  DOI  PubMed
               57.       Gusella M, Bolzonella C, Paolini R, et al. Plasma matrix metalloprotease 9 correlates with blood lymphocytosis, leukemic cell
                    invasiveness, and prognosis in B-cell chronic lymphocytic leukemia. Tumour Biol 2017;39:1010428317694325.  DOI  PubMed
               58.       Lopez-Dee Z, Pidcock K, Gutierrez LS. Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm 2011;2011:296069.
                    DOI  PubMed  PMC
   76   77   78   79   80   81   82   83   84   85   86