Page 81 - Read Online
P. 81
Page 18 of 22 García-Pardo et al. J Cancer Metastasis Treat 2021;7:62 https://dx.doi.org/10.20517/2394-4722.2021.103
leukemia cells and the stromal microenvironment: direct contact, soluble factors, and extracellular vesicles. Front Oncol
2020;10:1422. DOI PubMed PMC
31. Kay NE, Shanafelt TD, Strege AK, Lee YK, Bone ND, Raza A. Bone biopsy derived marrow stromal elements rescue chronic
lymphocytic leukemia B-cells from spontaneous and drug induced cell death and facilitates an "angiogenic switch". Leuk Res
2007;31:899-906. DOI PubMed PMC
32. Edelmann J, Klein-Hitpass L, Carpinteiro A, et al. Bone marrow fibroblasts induce expression of PI3K/NF-kappaB pathway genes
and a pro-angiogenic phenotype in CLL cells. Leuk Res 2008;32:1565-72. DOI PubMed
33. Maffei R, Fiorcari S, Bulgarelli J, et al. Physical contact with endothelial cells through β1- and β2- integrins rescues chronic
lymphocytic leukemia cells from spontaneous and drug-induced apoptosis and induces a peculiar gene expression profile in leukemic
cells. Haematologica 2012;97:952-60. DOI PubMed PMC
34. Xia Y, Lu RN, Li J. Angiogenic factors in chronic lymphocytic leukemia. Leuk Res 2012;36:1211-7. DOI PubMed
35. Aguirre Palma LM, Gehrke I, Kreuzer KA. Angiogenic factors in chronic lymphocytic leukaemia (CLL): where do we stand? Crit
Rev Oncol Hematol 2015;93:225-36. DOI PubMed
36. Kay NE, Bone ND, Tschumper RC, et al. B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic
molecules. Leukemia 2002;16:911-9. DOI PubMed
37. Baban D, Murray J, Earl H, Kerr D, Seymour L. Quantitative analysis of vascular endothelial growth factor expression in chronic
lymphocytic leukaemia. Int J Oncol ;1996:8:29-34. PubMed
38. Chen H, Treweeke AT, West DC, et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic
leukemia cells. Blood 2000;96:3181-7. PubMed
39. Ho CL, Hsu LF, Phyliky RL, Li CY. Autocrine expression of platelet-derived growth factor B in B cell chronic lymphocytic
leukemia. Acta Haematol 2005;114:133-40. DOI PubMed
40. Bauvois B, Dumont J, Mathiot C, Kolb JP. Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by
interferons. Leukemia 2002;16:791-8. DOI PubMed
41. Kamiguti AS, Lee ES, Till KJ, et al. The role of matrix metalloproteinase 9 in the pathogenesis of chronic lymphocytic leukaemia. Br
J Haematol 2004;125:128-40. DOI PubMed
42. Redondo-Muñoz J, Escobar-Díaz E, Samaniego R, Terol MJ, García-Marco JA, García-Pardo A. MMP-9 in B-cell chronic
lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to
podosomes, and is involved in cell invasion and migration. Blood 2006;108:3143-51. DOI PubMed
43. Duensing S, Atzpodien J. Increased intracellular and plasma levels of basic fibroblast growth factor in B-cell chronic lymphocytic
leukemia. Blood 1995;85:1978-80. PubMed
44. Menzel T, Rahman Z, Calleja E, et al. Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic
lymphocytic leukemia and is associated with resistance to fludarabine. Blood 1996;87:1056-63. PubMed
45. Gora-Tybor J, Blonski JZ, Robak T. Circulating proangiogenic cytokines and angiogenesis inhibitor endostatin in untreated patients
with chronic lymphocytic leukemia. Mediators Inflamm 2003;12:167-71. DOI PubMed PMC
46. Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and
pathological conditions. Clin Sci (Lond) 2005;109:227-41. DOI PubMed
47. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell
Biol 2006;7:359-71. DOI PubMed
48. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti-
and pro-angiogenic therapies. Genes Cancer 2011;2:1097-105. DOI PubMed PMC
49. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669-76. DOI PubMed
50. Molica S, Vitelli G, Levato D, Gandolfo GM, Liso V. Increased serum levels of vascular endothelial growth factor predict risk of
progression in early B-cell chronic lymphocytic leukaemia. Br J Haematol 1999;107:605-10. DOI PubMed
51. Molica S, Vitelli G, Levato D, Ricciotti A, Digiesi G. Clinicoprognostic implications of increased serum levels of vascular
endothelial growth factor and basic fibroblastic growth factor in early B-cell chronic lymphocytic leukaemia. Br J Cancer
2002;86:31-5. DOI PubMed PMC
52. Ding W, Knox TR, Tschumper RC, et al. Platelet-derived growth factor (PDGF)-PDGF receptor interaction activates bone marrow-
derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood
2010;116:2984-93. DOI PubMed PMC
53. Maffei R, Marasca R, Martinelli S, et al. Angiopoietin-2 expression in B-cell chronic lymphocytic leukemia: association with clinical
outcome and immunoglobulin heavy-chain mutational status. Leukemia 2007;21:1312-5. DOI PubMed
54. Maffei R, Martinelli S, Santachiara R, et al. Angiopoietin-2 plasma dosage predicts time to first treatment and overall survival in
chronic lymphocytic leukemia. Blood 2010;116:584-92. DOI PubMed
55. Vrbacky F, Smolej L, Vroblova V, et al. Angiopoietin-2 mRNA expression is increased in chronic lymphocytic leukemia patients
with poor prognostic features. Hematology 2010;15:210-4. DOI PubMed
56. Molica S, Vitelli G, Levato D, et al. Increased serum levels of matrix metalloproteinase-9 predict clinical outcome of patients with
early B-cell chronic lymphocytic leukaemia. Eur J Haematol 2003;70:373-8. DOI PubMed
57. Gusella M, Bolzonella C, Paolini R, et al. Plasma matrix metalloprotease 9 correlates with blood lymphocytosis, leukemic cell
invasiveness, and prognosis in B-cell chronic lymphocytic leukemia. Tumour Biol 2017;39:1010428317694325. DOI PubMed
58. Lopez-Dee Z, Pidcock K, Gutierrez LS. Thrombospondin-1: multiple paths to inflammation. Mediators Inflamm 2011;2011:296069.
DOI PubMed PMC