Page 84 - Read Online
P. 84

García-Pardo et al. J Cancer Metastasis Treat 2021;7:62  https://dx.doi.org/10.20517/2394-4722.2021.103  Page 21 of 22

               119.      Liu Y, Shi K, Chen Y, et al. Exosomes and their role in cancer progression. Front Oncol 2021;11:639159.  DOI  PubMed  PMC
               120.      Paggetti J, Haderk F, Seiffert M, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells
                    into cancer-associated fibroblasts. Blood 2015;126:1106-17.  DOI  PubMed  PMC
               121.      Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE. Circulating microvesicles in B-cell chronic lymphocytic
                    leukemia can stimulate marrow stromal cells: implications for disease progression. Blood 2010;115:1755-64.  DOI  PubMed  PMC
               122.      Nisticò N, Maisano D, Iaccino E, et al. Role of chronic lymphocytic leukemia (cll)-derived exosomes in tumor progression and
                    survival. Pharmaceuticals (Basel) 2020;13:244.  DOI  PubMed  PMC
               123.      Yeh YY, Ozer HG, Lehman AM, et al. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced
                    secretion by activation of BCR signaling. Blood 2015;125:3297-305.  DOI  PubMed  PMC
               124.      Ferrajoli A, Shanafelt TD, Ivan C, et al. Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and
                    patients with B chronic lymphocytic leukemia. Blood 2013;122:1891-9.  DOI  PubMed  PMC
               125.      Farahani M, Rubbi C, Liu L, Slupsky JR, Kalakonda N. CLL exosomes modulate the transcriptome and behaviour of recipient
                    stromal cells and are selectively enriched in miR-202-3p. PLoS One 2015;10:e0141429.  DOI  PubMed  PMC
               126.      Prieto D, Sotelo N, Seija N, et al. S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity
                    during disease progression. Blood 2017;130:777-88.  DOI  PubMed
               127.      Geng HY, Feng ZJ, Zhang JJ, Li GY. Exosomal CLIC1 released by CLL promotes HUVECs angiogenesis by regulating ITGβ1-
                    MAPK/ERK axis. Kaohsiung J Med Sci 2021;37:226-35.  DOI  PubMed
               128.      Crompot E, Van Damme M, Pieters K, et al. Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic
                    leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica 2017;102:1594-
                    604.  DOI  PubMed  PMC
               129.      Till KJ, Spiller DG, Harris RJ, Chen H, Zuzel M, Cawley JC. CLL, but not normal, B cells are dependent on autocrine VEGF and
                    alpha4beta1 integrin for chemokine-induced motility on and through endothelium. Blood 2005;105:4813-9.  DOI  PubMed
               130.      Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014;15:786-
                    801.  DOI  PubMed  PMC
               131.      García-pardo A, Opdenakker G. Nonproteolytic functions of matrix metalloproteinases in pathology and insights for the development
                    of novel therapeutic inhibitors. Metalloproteinases Med 2015;2:19-28.  DOI
               132.      Bailón E, Aguilera-Montilla N, Gutiérrez-González A, et al. A catalytically inactive gelatinase B/MMP-9 mutant impairs homing of
                    chronic lymphocytic leukemia cells by altering migration regulatory pathways. Biochem Biophys Res Commun 2018;495:124-30.
                    DOI  PubMed
               133.      Vaisitti T, Serra S, Pepper C, et al. CD38 signals upregulate expression and functions of matrix metalloproteinase-9 in chronic
                    lymphocytic leukemia cells. Leukemia 2013;27:1177-81.  DOI  PubMed
               134.      Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE. VEGF receptor phosphorylation status and apoptosis is
                    modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood
                    2004;104:788-94.  DOI  PubMed
               135.      Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF, Kay NE. VEGF receptors on chronic lymphocytic leukemia (CLL) B cells
                    interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia 2005;19:513-23.  DOI  PubMed
               136.      Pepper C, Ward R, Lin TT, et al. Highly purified CD38+ and CD38- sub-clones derived from the same chronic lymphocytic leukemia
                    patient have distinct gene expression signatures despite their monoclonal origin. Leukemia 2007;21:687-96.  DOI  PubMed
               137.      Farahani M, Treweeke AT, Toh CH, et al. Autocrine VEGF mediates the antiapoptotic effect of CD154 on CLL cells. Leukemia
                    2005;19:524-30.  DOI  PubMed
               138.      Avraamides CJ, Garmy-Susini B, Varner JA. Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer 2008;8:604-17.  DOI
                    PubMed  PMC
               139.      König A, Menzel T, Lynen S, et al. Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic
                    lymphocytic leukemia cell lines resulting in delaying apoptosis. Leukemia 1997;11:258-65.  DOI  PubMed
               140.      Bairey O, Zimra Y, Shaklai M, Rabizadeh E. Bcl-2 expression correlates positively with serum basic fibroblast growth factor (bFGF)
                    and negatively with cellular vascular endothelial growth factor (VEGF) in patients with chronic lymphocytic leukaemia. Br J
                    Haematol 2001;113:400-6.  DOI  PubMed
               141.      Romanov VV, James CH, Sherrington PD, Pettitt AR. Basic fibroblast growth factor suppresses p53 activation in the neoplastic cells
                    of a proportion of patients with chronic lymphocytic leukaemia. Oncogene 2005;24:6855-60.  DOI  PubMed
               142.      Martinez-Torres AC, Quiney C, Attout T, et al. CD47 agonist peptides induce programmed cell death in refractory chronic
                    lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med 2015;12:e1001796.  DOI  PubMed
                    PMC
               143.      Ringshausen I, Dechow T, Schneller F, et al. Constitutive activation of the MAPkinase p38 is critical for MMP-9 production and
                    survival of B-CLL cells on bone marrow stromal cells. Leukemia 2004;18:1964-70.  DOI  PubMed
               144.      Condoluci A, Rossi D. Richter syndrome. Curr Oncol Rep 2021;23:26.  DOI  PubMed  PMC
               145.      Kohlhaas V, Blakemore SJ, Al-Maarri M, et al. Active Akt signaling triggers CLL toward Richter transformation via overactivation
                    of Notch1. Blood 2021;137:646-60.  DOI  PubMed
               146.      Keating MJ, O'Brien S, Albitar M, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and
                    rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005;23:4079-88.  DOI  PubMed
               147.      Molica S, Vacca A, Tucc L, Ribatti D. Reversal of bone marrow angiogenesis in chronic lymphocytic leukemia following fludarabine
                    therapy. Haematologica 2005;90:698-700.  PubMed
   79   80   81   82   83   84   85   86   87   88   89