Page 82 - Read Online
P. 82

García-Pardo et al. J Cancer Metastasis Treat 2021;7:62  https://dx.doi.org/10.20517/2394-4722.2021.103  Page 19 of 22

               59.       Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B
                    cell chronic lymphocytic leukemia. J Exp Med 2001;194:1639-47.  DOI  PubMed  PMC
               60.       Sinha S, Boysen J, Nelson M, et al. Axl activates fibroblast growth factor receptor pathway to potentiate survival signals in B-cell
                    chronic lymphocytic leukemia cells. Leukemia 2016;30:1431-6.  DOI  PubMed  PMC
               61.       Ferrajoli A, Manshouri T, Estrov Z, et al. High levels of vascular endothelial growth factor receptor-2 correlate with shortened
                    survival in chronic lymphocytic leukemia. Clin Cancer Res 2001;7:795-9.  PubMed
               62.       Bairey O, Boycov O, Kaganovsky E, Zimra Y, Shaklai M, Rabizadeh E. All three receptors for vascular endothelial growth factor
                    (VEGF) are expressed on B-chronic lymphocytic leukemia (CLL) cells. Leuk Res 2004;28:243-8.  DOI  PubMed
               63.       Nowakowski GS, Mukhopadhyay D, Wu X, Kay NE. Neuropilin-1 is expressed by chronic lymphocytic leukemia B cells. Leuk Res
                    2008;32:1634-6.  DOI  PubMed  PMC
               64.       Piechnik A, Dmoszynska A, Omiotek M, et al. The VEGF receptor, neuropilin-1, represents a promising novel target for chronic
                    lymphocytic leukemia patients. Int J Cancer 2013;133:1489-96.  DOI  PubMed
               65.       Gutiérrez-González A, Aguilera-Montilla N, Ugarte-Berzal E, et al. α4β1 integrin associates with VEGFR2 in CLL cells and
                    contributes to VEGF binding and intracellular signaling. Blood Adv 2019;3:2144-8.  DOI  PubMed  PMC
               66.       Saharinen P, Jeltsch M, Santoyo MM, Leppänen V, Alitalo K. The TIE receptor family. In: Wheeler DL, Yarden Y, editors. Receptor
                    tyrosine kinases: family and subfamilies. Cham: Springer International Publishing; 2015. p. 743-75.  DOI
               67.       Aguayo A, Manshouri T, O'brien S, et al. Clinical relevance of Flt1 and Tie1 angiogenesis receptors expression in B-cell chronic
                    lymphocytic leukemia (CLL). Leuk Res 2001;25:279-85.  DOI  PubMed
               68.       Palma LM, Flamme H, Gerke I, Kreuzer KA. Angiopoietins modulate survival, migration, and the components of the Ang-Tie2
                    pathway of chronic lymphocytic leukaemia (CLL) cells in vitro. Cancer Microenviron 2016;9:13-26.  DOI  PubMed  PMC
               69.       Pötzsch B, Gehrke I, Poll-Wolbeck S, Flamme H, Kreuzer KA. Angiopoietin-2/Tie2 signaling in the microenvironment of chronic
                    lymphocytic leukemia (CLL). Res Cancer Tumor 2014;3:6-18.  DOI
               70.       Maffei R, Fiorcari S, Martinelli S, et al. Angiopoietin-2 acts as a survival factor for chronic lymphocytic leukemia B cells throughout
                    Tie-2 receptor engagement. Hematol Oncol 2018;36:372-5.  DOI  PubMed
               71.       Bogdanovic E, Nguyen VP, Dumont DJ. Activation of Tie2 by angiopoietin-1 and angiopoietin-2 results in their release and receptor
                    internalization. J Cell Sci 2006;119:3551-60.  DOI  PubMed
               72.       Rutella S, Rumi C, Puggioni P, Barberi, Di Mario A, et al. Expression of thrombospondin receptor (CD36) in B-cell chronic
                    lymphocytic leukemia as an indicator of tumor cell dissemination. Haematologica 1999;84:419-24.  PubMed
               73.       Mateo V, Lagneaux L, Bron D, et al. CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nat
                    Med 1999;5:1277-84.  DOI  PubMed
               74.       Mateo V, Brown EJ, Biron G, et al. Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: link
                    between phosphatidylserine exposure and cytoskeleton organization. Blood 2002;100:2882-90.  DOI  PubMed
               75.       Redondo-Muñoz J, Ugarte-Berzal E, García-Marco JA, et al. Alpha4beta1 integrin and 190-kDa CD44v constitute a cell surface
                    docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood 2008;112:169-78.  DOI
               76.       Amigo-Jiménez I, Bailón E, Ugarte-Berzal E, Aguilera-Montilla N, García-Marco JA, García-Pardo A. Matrix metalloproteinase-9 is
                    involved in chronic lymphocytic leukemia cell response to fludarabine and arsenic trioxide. PLoS One 2014;9:e99993.  DOI  PubMed
                    PMC
               77.       Bailón E, Ugarte-Berzal E, Amigo-Jiménez I, et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory
                    pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol 2014;96:185-99.  DOI
                    PubMed
               78.       Aguilera-Montilla N, Bailón E, Uceda-Castro R, et al. MMP-9 affects gene expression in chronic lymphocytic leukemia revealing
                    CD99 as an MMP-9 target and a novel partner in malignant cell migration/arrest. Oncogene 2019;38:4605-19.  DOI  PubMed
               79.       Aguilera-Montilla N, Bailón E, Ugarte-Berzal E, et al. Matrix metalloproteinase-9 induces a pro-angiogenic profile in chronic
                    lymphocytic leukemia cells. Biochem Biophys Res Commun 2019;520:198-204.  DOI  PubMed
               80.       Cohen JA, Bomben R, Pozzo F, et al. An updated perspective on current prognostic and predictive biomarkers in chronic lymphocytic
                    leukemia in the context of chemoimmunotherapy and novel targeted therapy. Cancers (Basel) 2020;12:894.  DOI  PubMed  PMC
               81.       Redondo-Muñoz J, Ugarte-Berzal E, Terol MJ, et al. Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell
                    survival through its hemopexin domain. Cancer Cell 2010;17:160-72.  DOI  PubMed
               82.       Tissino E, Pozzo F, Benedetti D, et al. CD49d promotes disease progression in chronic lymphocytic leukemia: new insights from
                    CD49d bimodal expression. Blood 2020;135:1244-54.  DOI  PubMed  PMC
               83.       Maffei R, Martinelli S, Castelli I, et al. Increased angiogenesis induced by chronic lymphocytic leukemia B cells is mediated by
                    leukemia-derived Ang2 and VEGF. Leuk Res 2010;34:312-21.  DOI  PubMed
               84.       Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: Implications
                    for disease pathogenesis and treatment. Biochim Biophys Acta 2016;1863:401-13.  DOI  PubMed  PMC
               85.       Schulz A, Toedt G, Zenz T, Stilgenbauer S, Lichter P, Seiffert M. Inflammatory cytokines and signaling pathways are associated with
                    survival of primary chronic lymphocytic leukemia cells in vitro: a dominant role of CCL2. Haematologica 2011;96:408-16.  DOI
                    PubMed  PMC
               86.       Do HTT, Lee CH, Cho J. Chemokines and their receptors: multifaceted roles in cancer progression and potential value as cancer
                    prognostic markers. Cancers (Basel) 2020;12:287.  DOI  PubMed  PMC
               87.       Ugarte-Berzal E, Redondo-Muñoz J, Eroles P, et al. VEGF/VEGFR2 interaction down-regulates matrix metalloproteinase-9 via
                    STAT1 activation and inhibits B chronic lymphocytic leukemia cell migration. Blood 2010;115:846-9.  DOI  PubMed
   77   78   79   80   81   82   83   84   85   86   87