Page 56 - Read Online
P. 56
Gambari et al. J Cancer Metastasis Treat 2019;5:55 I http://dx.doi.org/10.20517/2394-4722.2019.18 Page 13 of 13
oncology (Review). Int J Oncol 2018;53:1395-434.
111. Bertucci A, Prasetyanto EA, Septiadi D, Manicardi A, Brognara E, et al. Combined delivery of temozolomide and anti-mir221 PNA
using mesoporous silica nanoparticles induces apoptosis in resistant glioma cells. Small 2015;11:5687-95.
112. Brognara E, Fabbri E, Montagner G, Gasparello J, Manicardi A, et al. High levels of apoptosis are induced in human glioma cell lines
by co-administration of peptide nucleic acids targeting miR-221 and miR-222. Int J Oncol 2016;48:1029-38.
113. Seo YE, Suh HW, Bahal R, Josowitz A, Zhang J, et al. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival
in glioblastoma. Biomaterials 2019;201:87-98.
114. Tomassi S, Ieranò C, Mercurio ME, Nigro E, Daniele A, et al. Cationic nucleopeptides as novel non-covalent carriers for the delivery of
peptide nucleic acid (PNA) and RNA oligomers. Bioorg Med Chem 2018;26:2539-50.
115. Avitabile C, Accardo A, Ringhieri P, Morelli G, Saviano M, et al. Incorporation of naked peptide nucleic acids into liposomes leads to
fast and efficient delivery. Bioconjug. Chem 2015;26:1533-41.
116. Saleh AF, Arzumanov A, Abes R, Owen D, Lebleu B, et al. Synthesis and splice- redirecting activity of branched, arginine-rich peptide
dendrimer conjugates of peptide nucleic acid oligonucleotides. Bioconj Chem 2010;21:1902-11.
117. Turner Y, Wallukat G, Säälik P, Wiesner B, Pritz S, et al. Cellular uptake and biological activity of peptide nucleic acids conjugated with
peptides with and without cell-penetrating ability. J Pept Sci 2010;16:71-80.
118. Hu J, Corey DR. Inhibiting gene expression with peptide nucleic acid (PNA)-peptide conjugates that target chromosomal DNA.
Biochemistry 2007;46:7581-9.
119. Hnedzko D, McGee DW, Karamitas YA, Rozners E. Sequence-selective recognition of double-stranded RNA and enhanced cellular
uptake of cationic nucleobase and backbone- modified peptide nucleic acids. RNA 2017;23:58-69.
120. Shiraishi T, Hamzavi R, Nielsen P E. Subnanomolar antisense activity of phosphonate- peptide nucleic acid (PNA) conjugates delivered
by cationic lipids to HeLa cells. Nucleic Acids Res 2008;36:4424-32.
121. McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, et al. Nanoparticles deliver triplex-forming PNAs for site-specific genomic
recombination in CD34+ human hematopoietic progenitors. Mol Ther 2011; 19:172-180.
122. Macadangdang B, Zhang N, Lund PE, Marple AH, Okabe M, et al. Inhibition of multidrug resistance by SV40 pseudovirion delivery of
an antigene peptide nucleic acid (PNA) in cultured cells. PLoS One 2011; 6:e17981.
123. Hamilton SE, Simmons CG, Kathiriya IS, Corey DR. Cellular delivery of peptide nucleic acids and inhibition of human telomerase.
Chem Biol 1999;6:343-51.
124. Bertucci A, Lülf H, Septiadi D, Manicardi A, Corradini R, et al. Intracellular delivery of peptide nucleic acid and organic molecules
using zeolite-L nanocrystals. Adv Healthc Mater 2014;3:1812-7.
125. Gasparello J, Manicardi A, Casnati A, Corradini R, Gambari R, et al. Efficient cell penetration and delivery of peptide nucleic acids by
an argininocalix[4]arene. Sci Rep 2019;9:3036.
126. Jung J, Yeom C, Choi YS, Kim S, Lee E, et al. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA
sponge. Oncotarget 2015;6:20370-87.