Page 54 - Read Online
P. 54
Gambari et al. J Cancer Metastasis Treat 2019;5:55 I http://dx.doi.org/10.20517/2394-4722.2019.18 Page 11 of 13
47. Chen L, Zhang J, Han L, Zhang A, Zhang C, et al. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating
apoptosis independently of p53 status. Oncol Rep 2012;27:854-60.
48. Xie Q, Yan Y, Huang Z, Zhong X, Huang L. MicroRNA-221 targeting PI3-K/Akt signaling axis induces cell proliferation and resistance
in human glioblastoma. Neuropathology 2014;34:455-64.
49. Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-
substituted polyamide. Science 1991;254:1497-500.
50. Nielsen PE. Targeting double stranded DNA with peptide nucleic acid (PNA). Curr Med Chem 2001;8:545-50.
51. Borgatti M, Lampronti I, Romanelli A, Pedone C, Saviano M, et al. Transcription factor decoy molecules based on a peptide nucleic acid
(PNA)-DNA chimera mimicking Sp1 binding sites. J Biol Chem 2003;278:7500-9.
52. Gambari R. Peptide-nucleic acids (PNAs): a tool for the development of gene expression modifiers. Curr Pharm Des 2001;7:1839-62.
53. Gambari R. Biological activity and delivery of peptide nucleic acids (PNA)-DNA chimeras for transcription factor decoy (TFD)
pharmacotherapy. Curr Med Chem 2004;11:1253-63.
54. Nielsen PE. Peptide nucleic acids (PNA) in chemical biology and drug discovery. Chem Biodivers 2010;7:786-804.
55. Nielsen PE. Gene targeting and expression modulation by peptide nucleic acids (PNA). Curr Pharm Des 2010;16:3118-23.
56. Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, et al. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA
chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas
aeruginosa. Biochem Pharmacol 2010;80:1887-94.
57. Pandey VN, Upadhyay A, Chaubey B. Prospects for antisense peptide nucleic acid (PNA) therapies for HIV. Expert Opin Biol Ther
2009;9:975-89.
58. Manicardi A, Fabbri E, Tedeschi T, Sforza S, Bianchi N, et al. Cellular Uptakes, biostabilities and anti-miR-210 activities of chiral
Arginine-PNAs in leukaemic K562 cells. Chembiochem 2012;13:1327-37.
59. Fabbri E, Manicardi A, Tedeschi T, Sforza S, Bianchi N, et al. Modulation of the biological activity of microRNA-210 with peptide
nucleic acids (PNAs). ChemMedChem 2011;6:2192-202.
60. Fabani MM, Gait MJ. MiR-122 targeting with LNA/2'-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-
peptide conjugates. RNA 2008:14:336-46.
61. Fabani MM, Abreu-Goodger C, Williams D, Lyons PA, Torres AG, et al. Efficient inhibition of miR-155 function in vivo by peptide
nucleic acids. Nucleic Acids Research 2010;38:4466-75.
62. Brognara E, Fabbri E, Aimi F, Manicardi A, Bianchi N, et al. Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in
breast cancer MDA-MB-231 cells. Int J Oncol 2012;41:2119-27.
63. Manicardi A, Gambari R, de Cola L, Corradini R. Preparation of Anti-miR PNAs for Drug Development and Nanomedicine. Methods
Mol Biol 2018;1811:49-63.
64. Gupta A, Quijano E, Liu Y, Bahal R, Scanlon SE, et al. Anti-tumor Activity of miniPEG- γ-Modified PNAs to Inhibit MicroRNA-210
for Cancer Therapy. Mol Ther Nucleic Acids 2017;9:111-9.
65. Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, et al. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro
migration and in vivo tumor growth. Breast Cancer Res 2011;13:R2.
66. Brognara E, Fabbri E, Bazzoli E, Montagner G, Ghimenton C, et al. Uptake by human glioma cell lines and biological effects of a
peptide-nucleic acids targeting miR-221. J Neurooncol 2014;118:19-28.
67. von Neubeck C, Seidlitz A, Kitzler HH, Beuthien-Baumann B, Krause M. Glioblastoma multiforme: emerging treatments and
stratification markers beyond new drugs. Br J Radiol 2015;88:20150354.
68. Buczkowicz P, Hawkins C. Pathology, molecular genetics, and epigenetics of diffuse intrinsic pontine glioma. Front Oncol 2015;5:147.
69. Pace A, Dirven L, Koekkoek JAF, Golla H, Fleming J, et al. European association for neuro-oncology (EANO) guidelines for palliative
care in adults with glioma. Lancet Oncol 2017;18:e330-40.
70. Polivka J, Polivka J, Holubec L, Kubikova T, Priban V, et al. Advances in experimental targeted therapy and immunotherapy for patients
with glioblastoma multiforme. Anticancer Res 2017;7:21-33.
71. Abbruzzese C, Matteoni S, Signore M, Cardone L, Nath K, et al. Drug repurposing for the treatment of glioblastoma multiforme. J Exp
Clin Cancer Res 2017;36:169.
72. Artene SA, Tuţă C, Dragoi A, Alexandru O, Stefana Oana P, et al. Current and emerging EGFR therapies for glioblastoma. J Immunoassay
Immunochem 2018;39:1-11.
73. Popescu AM, Alexandru O, Brindusa C, Purcaru SO, Tache DE, et al. Targeting the VEGF and PDGF signaling pathway in glioblastoma
treatment. Int J Clin Exp Pathol 2015;8:7825-37.
74. Trojan J, Cloix JF, Ardourel MY, Chatel M, Anthony DD. Insulin-like growth factor type I biology and targeting in malignant gliomas.
Neuroscience 2007;145:795-811.
75. Cuevas P, Carceller F, Angulo J, González-Corrochano R, Cuevas-Bourdier A, et al. Antiglioma effects of a new, low molecular mass,
inhibitor of fibroblast growth factor. Neurosci Lett 2011;491:1-7.
76. McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current State of Immunotherapy for Treatment of Glioblastoma. Curr Treat
Options Oncol 2019;20:24.
77. Castro-Gamero AM, Pezuk JA, Brassesco MS, Tone LG. G2/M inhibitors as pharmacotherapeutic opportunities for glioblastoma: the
old, the new, and the future. Cancer Biol Med 2018;15:354-74.
78. Krichevsky AM, Uhlmann EJ. Oligonucleotide therapeutics as a new class of drugs for malignant brain tumors: targeting mRNAs,
regulatory RNAs, mutations, combinations, and beyond. Neurotherapeutics 2019; In Press.