Page 53 - Read Online
P. 53
Page 10 of 13 Gambari et al. J Cancer Metastasis Treat 2019;5:55 I http://dx.doi.org/10.20517/2394-4722.2019.18
12. Taylor MA, Schiemann WP. Therapeutic Opportunities for Targeting microRNAs in Cancer. Mol Cell Ther 2014;2:1-13.
13. Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 2013;93:98-104.
14. Piva R, Spandidos DA, Gambari R. From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast
cancer research and treatment. Int J Oncol 2013;43:985-94
15. Gambari R, Brognara E, Spandidos DA, Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in
the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016;49:5-32.
16. Finotti A, Allegretti M, Gasparello J, Giacomini P, Spandidos DA, et al. Liquid biopsy and PCR-free ultrasensitive detection systems in
oncology. Int J Oncol 2018;53:1395-434.
17. Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol 2019; in press.
18. Pekarsky Y, Croce CM. Noncoding RNA genes in cancer pathogenesis. Adv Biol Regul 2018;71:219-23.
19. Kogure A, Kosaka N, Ochiya T. Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging
player in cancer metastasis. J Biomed Sci 2019;26:7.
20. Montgomery RL, Yu G, Latimer PA, Stack C, Robinson K, et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med
2014;6:1347-56.
21. Bader AG. miR-34-a microRNA replacement therapy is headed to the clinic. Front Genet 2012;3:120.
22. Kwekkeboom RF, Lei Z, Doevendans PA, Musters RJ, Sluijter JP. Targeted delivery of miRNA therapeutics for cardiovascular diseases:
opportunities and challenges. Clin Sci (Lond) 2014;127:351-65.
23. Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 2007;21:1025-30.
24. Sampson VB, Rong NH, Han J, Yang Q, Aris V, et al. MicroRNA let-7a down-regulates MYC and reverts MYC induced growth in
burkitt lymphoma cells. Cancer Res 2007;67:9762-70.
25. Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene
Ther 2006;13:496-502.
26. Lu Y, Xiao J, Lin H, Bai Y, Luo X, et al. A single antimicroRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple
microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 2009;37:e24.
27. Lennox KA, Behlke MA. Chemical modification and design of antimiRNA oligonucleotides. Gene Ther 2011;18:1111-20.
28. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet
2011;43:371-8.
29. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, et al. LNA-mediated microRNA silencing in non-human primates. Nature
2008;452:896-9.
30. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA based cancer diagnostics and
therapeutics. Semin Cancer Biol 2008;18:89-102.
31. Staedel C, Varon C, Nguyen PH, Vialet B, Chambonnier L, et al. Inhibition of gastric tumor cell growth using seed-targeting LNA as
specific, long-lasting MicroRNA inhibitors. Mol Ther Nucleic Acids 2015;4:e246.
32. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods
2007;4:721-6.
33. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 2010;16:2043-50.
34. Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, et al. Rapid generation of microRNA sponges for microRNA inhibition. PLoS
One 2012;7:e29275.
35. Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, et al. Generation of miRNA sponge constructs. Methods
2012;58:113-7.
36. Li KC, Chang YH, Yeh CL, Hu YC. Healing of osteoporotic bone defects by baculovirus- engineered bone marrow-derived MSCs
expressing MicroRNA sponges. Biomaterials 2015;74:155-66.
37. de Melo Maia B, Ling H, Monroig P, Ciccone M, Soares FA, et al. Design of a miRNA sponge for the miR-17 miRNA family as a
therapeutic strategy against vulvar carcinoma. Mol Cell Probes 2015;29:420-6.
38. Tay FC, Lim JK, Zhu H, Lin LC, Wang S. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells.
Adv Drug delivery Rev 2015;81:117-27.
39. Liu Y, Han Y, Zhang H, Nie L, Jiang Z, et al. Synthetic miRNA-mowers targeting miR- 183-96-182 cluster or miR-210 inhibit growth
and migration and induce apoptosis in bladder cancer cells. PLoS One 2012;7:e52280.
40. Wang Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol Biol 2011;676:43-9.
41. Bak RO, Hollensen AK, Mikkelsen JG. Managing microRNAs with vector-encoded decoy-type inhibitors. Mol Ther 2013;21:1478-85.
42. Murakami K, Miyagishi M. Tiny masking locked nucleic acids effectively bind to mRNA and inhibit binding of microRNAs in relation
to thermodynamic stability. Biomed Rep 2014;2:509-12.
43. Das S. Identification and targeting of microRNAs modulating acquired chemotherapy resistance in Triple negative breast cancer
(TNBC): A better strategy to combat chemoresistance. Med Hypotheses 2016;96:5-8.
44. Chan JK, Blansit K, Kiet T, Sherman A, Wong G, et al. The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian
cancer. Gynecol Oncol 2014;132:739-44.
45. Feng R, Dong L. Knockdown of microRNA-127 reverses adriamycin resistance via cell cycle arrest and apoptosis sensitization in
adriamycin-resistant human glioma cells. Int J Clin Exp Pathol 2015;8:6107-16.
46. Li W, Guo F, Wang P, Hong S, Zhang C. miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent
of PTEN status. Curr Mol Med 204;14:185-95.