Page 47 - Read Online
P. 47

Page 14 of 14                                Liu et al. J Cancer Metastasis Treat 2019;5:4  I  http://dx.doi.org/10.20517/2394-4722.2018.55

                   resonance Raman and electron paramagnetic resonance spectroscopy. Exp Dermatol 2011;20:483-7.
               69.  Lademann J, Meinke MC, Sterry W, Darvin ME. Carotenoids in human skin. Exp Dermatol 2011;20:377-82.
               70.  Wrona M, Korytowski W, Rozanowska M, Sarna T, Truscott TG. Cooperation of antioxidants in protection against photosensitized
                   oxidation. Free Radic Biol Med 2003;35:1319-29.
               71.  Palozza P, Krinsky NI. beta-Carotene and alpha-tocopherol are synergistic antioxidants. Arch Biochem Biophys 1992;297:184-7.
               72.  Darvin ME, Sterry W, Lademann J. Resonance Raman spectroscopy as an effective tool for the determination of antioxidative stability of
                   cosmetic formulations. Journal of Biophotonics 2010;3:82-8.
               73.  Puppels GJ, Schut TCB, Sijtsema NM, Grond M, Maraboeuf F, et al. Development and Application of Raman microspectroscopic and
                   Raman imaging techniques for cell biological studies. Journal of Molecular Structure 1995;347:477-84.
               74.  Prendergast GC. Why tumours eat tryptophan. Nature 2011;478:192-4.
               75.  Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. European Journal of Pharmacology
                   1999;375:87-100.
               76.  Fatokun AA, Hunt NH, Ball HJ. Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: characteristics and potential roles in
                   health and disease. Amino Acids 2013;45:1319-29.
               77.  Sordillo PP, Sordillo LA, Helson L. The kynurenine pathway: a primary resistance mechanism in patients with glioblastoma. Anticancer
                   Research 2017;37:2159-71.
               78.  Shafaat HS, Kim JE. Resonance Raman analysis of the tryptophan cation radical. J Phys Chem Lett 2014;5:3009−14.
               79.  Shafaat HS, Leigh BS, Tauber MJ, Kim JE. Resonance Raman characterization of a stable tryptophan radical in an azurin mutant. J Phys
                   Chem B 2009;113:382-8.
               80.  Bleifuss G, Kolberg M, Pötsch S, Hofbauer W, Bittl R, et al. Tryptophan and tyrosine radicals in ribonucleotide reductase: a comparative
                   high-field EPR study at 94 GHz. Biochemistry 2001;40:15362-8.
               81.  Pandey R, Paidi SK, Kang JW, Spegazzini N. Discerning the differential molecular pathology of proliferative middle ear lesions using
                   Raman spectroscopy. Scientific Reports 2015;5:13305.
               82.  Bodanese B, Silveira LJ, Albertini R, Zangaro RA, Pacheco MTT. Differentiating normal and basal cell carcinoma human skin tissues
                   in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models.
                   Photomed Laser Surg 2010;28 Suppl 1:S119-S27.
               83.  Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci
                   Transl Med 2015;7:274ra19.
               84.  Bergholt MS, Zheng W, Ho KY, Teh M, Yeoh KG, et al. Fiberoptic confocal raman spectroscopy for real-time in vivo diagnosis of dysplasia
                   in Barrett’s esophagus. Gastroenterology 2014;146:27-32.
               85.  Lu L, Shi L, Secor J, Alfano RR. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state.
                   J Photochem Photobiol B 2018;179:18-22.
   42   43   44   45   46   47   48   49   50   51   52