Page 82 - Read Online
P. 82
Maisel et al. J Cancer Metastasis Treat 2019;5:7 I http://dx.doi.org/10.20517/2394-4722.2018.82 Page 13 of 14
and nuclear oncogenic activity of EGFR in head and neck cancer. Sci Rep 2017;7:40664.
93. Hadzisejdić I, Mustać E, Jonjić N, Petković M, Grahovac B. Nuclear EGFR in ductal invasive breast cancer: correlation with cyclin-D1 and
prognosis. Mod Pathol 2010;23:392-403.
94. Hoshino M, Fukui H, Ono Y, Sekikawa A, Ichikawa K, et al. Nuclear expression of phosphorylated EGFR is associated with poor prognosis
of patients with esophageal squamous cell carcinoma. Pathobiology 2007;74:15-21.
95. Lin SY, Makino K, Xia W, Matin A, Wen Y, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor.
Nat Cell Biol 2001;3:802-8.
96. Pochampalli MR, Bitler BG, Schroeder JA. Transforming growth factor alpha dependent cancer progression is modulated by Muc1. Cancer
Res 2007;67:6591-8.
97. Aggarwal P, Lessie MD, Lin DI, Pontano L, Gladden AB, et al. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent
Cdt1 proteolysis and triggers p53-dependent DNA rereplication. Genes Dev 2007;21:2908-22.
98. Bertelsen V, Stang E. The mysterious ways of ErbB2/HER2 trafficking. Membranes (Basel) 2014;4:424-46.
99. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene
2006;366:2-16.
100. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, et al. Human breast cancer: correlation of relapse and survival with amplification of
the HER-2/neu oncogene. Science 1987;235:177-82.
101. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian
cancer. Science 1989;244:707-12.
102. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol
2010;28:3271-7.
103. Wang SC, Lien HC, Xia W, Chen IF, Lo HW, et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase
receptor ErbB-2. Cancer Cell 2004;6:251-61.
104. Edwards J, Mukherjee R, Munro AF, Wells AC, Almushatat A, et al. HER2 and COX2 expression in human prostate cancer. Eur J Cancer
2004;40:50-5.
105. Thorat D, Sahu A, Behera R, Lohite K, Deshmukh S, et al. Association of osteopontin and cyclooxygenase-2 expression with breast cancer
subtypes and their use as potential biomarkers. Oncol Lett 2013;6:1559-64.
106. Glynn SA, Prueitt RL, Ridnour LA, Boersma BJ, Dorsey TM, et al. COX-2 activation is associated with Akt phosphorylation and poor
survival in ER-negative, HER2-positive breast cancer. BMC Cancer 2010;10:626.
107. Waterman H, Alroy I, Strano S, Seger R, Yarden Y. The C-terminus of the kinase-defective neuregulin receptor ErbB-3 confers mitogenic
superiority and dictates endocytic routing. EMBO J 1999;18:3348-58.
108. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF 3rd, et al. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2
requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003;100:8933-8.
109. Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and
human mammary carcinomas. Oncogene 1995;10:1813-21.
110. Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, et al. Heregulin-dependent regulation of HER2/neu oncogenic signaling by
heterodimerization with HER3. EMBO J 1995;14:4267-75.
111. Kobayashi M, Iwamatsu A, Shinohara-Kanda A, Ihara S, Fukui Y. Activation of ErbB3-PI3-kinase pathway is correlated with malignant
phenotypes of adenocarcinomas. Oncogene 2003;22:1294-301.
112. Roepstorff K, Grøvdal L, Grandal M, Lerdrup M, van Deurs B. Endocytic downregulation of ErbB receptors: mechanisms and relevance in
cancer. Histochem Cell Biol 2008;129:563-78.
113. Frazier NM, Brand T, Gordan JD, Grandis J, Jura N. Overexpression-mediated activation of MET in the Golgi promotes HER3/ERBB3
phosphorylation. Oncogene 2018; doi: 10.1038/s41388-018-0537-0.
114. Andrique L, Fauvin D, El Maassarani M, Colasson H, Vannier B, et al. ErbB3(80 kDa), a nuclear variant of the ErbB3 receptor, binds to the
cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cell Signal 2012;24:1074-85.
115. Koumakpayi IH, Diallo JS, Le Page C, Lessard L, Gleave M, et al. Expression and nuclear localization of ErbB3 in prostate cancer. Clin
Cancer Res 2006;12:2730-7.
116. Cheng CJ, Ye XC, Vakar-Lopez F, Kim J, Tu SM, et al. Bone microenvironment and androgen status modulate subcellular localization of
ErbB3 in prostate cancer cells. Mol Cancer Res 2007;5:675-84.
117. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012;12:553-63.
118. Schlessinger J, Lemmon MA. Nuclear signaling by receptor tyrosine kinases: the first robin of spring. Cell 2006;127:45-8.
119. Mendoza-Naranjo A, El-Naggar A, Wai DH, Mistry P, Lazic N, et al. ERBB4 confers metastatic capacity in Ewing sarcoma. EMBO Mol
Med 2013;5:1087-102.
120. Ljuslinder I, Malmer B, Isaksson-Mettävainio M, Oberg A, Henriksson R, et al. ErbB 1-4 expression alterations in primary colorectal
cancers and their corresponding metastases. Anticancer Res 2009;29:1489-94.
121. Junttila TT, Sundvall M, Lundin M, Lundin J, Tanner M, et al. Cleavable ErbB4 isoform in estrogen receptor-regulated growth of breast
cancer cells. Cancer Res 2005;65:1384-93.
122. Subtil A, Hémar A, Dautry-Varsat A. Rapid endocytosis of interleukin 2 receptors when clathrin-coated pit endocytosis is inhibited. J Cell
Sci 1994;107:3461-8.
123. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J
Cell Biol 1983;97:329-39.
124. Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, et al. Interleukin 2 receptors and detergent-resistant membrane domains define a
clathrin-independent endocytic pathway. Mol Cell 2001;7:661-71.
125. Orlandi PA, Fishman PH. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-