Page 49 - Read Online
P. 49

Tu et al. J Cancer Metastasis Treat 2018;4:58  I  http://dx.doi.org/10.20517/2394-4722.2018.67                                Page 15 of 16

               6.   Warburg O. On the origin of cancer cells. Science (New York, NY) 1956;123:309-14.
               7.   Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012;21:297-308.
               8.   Xing Y, Zhao S, Zhou BP, Mi J. Metabolic reprogramming of the tumour microenvironment. FEBS J 2015;282:3892-8.
               9.   Munoz-Pinedo C, El Mjiyad N, Ricci JE. Cancer metabolism: current perspectives and future directions. Cell Death Dis 2012;3:e248.
               10.  Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH, et al. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res
                   Treat 2015;38:117-22.
               11.  Nakazawa MS, Keith B, Simon MC. Oxygen availability and metabolic adaptations. Nat Rev Cancer 2016;16:663-73.
               12.  Lu X, Bennet B, Mu E, Rabinowitz J, Kang Y. Metabolomic changes accompanying transformation and acquisition of metastatic potential
                   in a syngeneic mouse mammary tumor model. J Biol Chem 2010;285:9317-21.
               13.  Simões RV, Serganova IS, Kruchevsky N, Leftin A, Shestov AA, et al. Metabolic plasticity of metastatic breast cancer cells: adaptation to
                   changes in the microenvironment. Neoplasia (New York, NY) 2015;17:671-84.
               14.  Meadows AL, Kong B, Berdichevsky M, Roy S, Rosiva R, et al. Metabolic and morphological differences between rapidly proliferating
                   cancerous and normal breast epithelial cells. Biotechnol Prog 2008;24:334-41.
               15.  Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in
                   breast cancer. Cell Metab 2015;22:577-89.
               16.  Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res
                   2007;67:1472-86.
               17.  LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, et al. PGC-1α mediates mitochondrial biogenesis and oxidative
                   phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 2014;16:992-1003, 1-15.
               18.  O’Flanagan CH, Rossi EL, McDonell SB, Chen X, Tsai YH, et al. Metabolic reprogramming underlies metastatic potential in an obesity-
                   responsive murine model of metastatic triple negative breast cancer. NPJ Breast Cancer 2017;3:26.
               19.  Cailleau R, Mackay B, Young RK, Reeves WJ Jr. Tissue culture studies on pleural effusions from breast carcinoma patients. Cancer Res
                   1974;34:801-9.
               20.  Chang XZ, Li DQ, Hou YF, Wu J, Lu JS, et al. Identification of the functional role of AF1Q in the progression of breast cancer. Breast Can-
                   cer Res Treat 2008;111:65-78.
               21.  Chang XZ, Li DQ, Hou YF, Wu J, Lu JS, et al. Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer.
                   Breast Cancer Res 2007;9:R76.
               22.  Fietz ER, Keenan CR, Lopez-Campos G, Tu Y, Johnstone CN, et al. Glucocorticoid resistance of migration and gene expression in a daugh-
                   ter MDA-MB-231 breast tumour cell line selected for high metastatic potential. Sci Rep 2017;7:43774.
               23.  Johnstone CN, Pattison AD, Gorringe KL, Harrison PF, Powell DR, et al. Functional and genomic characterisation of a xenograft model
                   system for the study of metastasis in triple-negative breast cancer. Dis Model Mech 2018;11:dmm032250.
               24.  Johnstone CN, Mongroo PS, Rich AS, Schupp M, Bowser MJ, et al. Parvin-beta inhibits breast cancer tumorigenicity and promotes CDK9-
                   mediated peroxisome proliferator-activated receptor gamma 1 phosphorylation. Mol Cell Biol 2008;28:687-704.
               25.  Louis KS, Siegel AC. Cell viability analysis using trypan blue: manual and automated methods. Methods Mol Biol 2011;740:7-12.
               26.  Czekanska EM. Assessment of cell proliferation with resazurin-based fluorescent dye. Methods Mol Biol 2011;740:27-32.
               27.  Giraud J, Failla LM, Pascussi JM, Lagerqvist EL, Ollier J, et al. Autocrine Secretion of Progastrin Promotes the Survival and Self-Renewal
                   of Colon Cancer Stem-like Cells. Cancer Res 2016;76:3618-28.
               28.  Johnstone CN, Castellvi-Bel S, Chang LM, Bessa X, Nakagawa H, et al. ARHGAP8 is a novel member of the RHOGAP family related to
                   ARHGAP1/CDC42GAP/p50RHOGAP: mutation and expression analyses in colorectal and breast cancers. Gene 2004;336:59-71.
               29.  Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res
                   2013;41:e108.
               30.  Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinfor-
                   matics 2014;30:923-30.
               31.  Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol 2010;11:220.
               32.  Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression
                   data. Bioinformatics 2010;26:139-40.
               33.  Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res
                   2016;44:D1251-7.
               34.  Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, et al. AmiGO: online access to ontology and annotation data. Bioinformatics
                   2009;25:288-9.
               35.  Gray KA, Seal RL, Tweedie S, Wright MW, Bruford EA. A review of the new HGNC gene family resource. Hum Genomics 2016;10:6.
               36.  O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell
                   cytotoxicity. Eur J Biochem 2000;267:5421-6.
               37.  Gonzalez RJ, Tarloff JB. Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol In Vitro
                   2001;15:257-9.
               38.  Finley LW, Zhang J, Ye J, Ward PS, Thompson CB. SnapShot: cancer metabolism pathways. Cell Metab 2013;17:466.e2.
               39.  Li GH, Huang JF. Inferring therapeutic targets from heterogeneous data: HKDC1 is a novel potential therapeutic target for cancer. Bioinfor-
                   matics 2014;30:748-52.
               40.  Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and
                   primary tumors. J Clin Invest 2005;115:44-55.
               41.  Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436:518-24.
               42.  Wirapati P, Sotiriou C, Kunkel S, Farmer P, Pradervand S, et al. Meta-analysis of gene expression profiles in breast cancer: toward a unified
                   understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 2008;10:R65.
   44   45   46   47   48   49   50   51   52   53   54