Page 83 - Read Online
P. 83
Zhang et al. Intell Robot 2022;2(4):37190 I http://dx.doi.org/10.20517/ir.2022.26 Page 389
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
All the authors have consented to the publication of this manuscript.
Copyright
© The Author(s) 2022.
REFERENCES
1. Hasenjäger M, Heckmann M, Wersing H. A survey of personalization for advanced driver assistance systems. IEEE Trans Intell Veh
2020;5:335–44. DOI
2. Li L, Wen D, Zheng N, Shen L. Cognitive cars: a new frontier for ADAS research. IEEE Trans Intell Trans Syst 2012;13:395–407. DOI
3. Muresan MP, Nedevschi S. Multimodal sparse LIDAR object tracking in clutter. In: 2018 IEEE 14th International Conference on
Intelligent Computer Communication and Processing (ICCP); 2018. pp. 215–21. DOI
4. Cheng J, Ju M, Zhou M, Liu C, Gao S, et al. A dynamic evolution method for autonomous vehicle groups in a highway scene. IEEE Int
Things J 2022;9:1445–57. DOI
5. Yuan T, Krishnan K, Duraisamy B, Maile M, Schwarz T. Extended object tracking using IMM approach for a realworld vehicle sensor
fusion system. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI); 2017. pp.
638–43. DOI
6. Guo C, Meguro J, Kojima Y, Naito T. A multimodal ADAS system for unmarked urban scenarios based on road context understanding.
IEEE Trans Intell Transp Syst 2015;16:1690–704. DOI
7. Hosseinnia SH, Tejado I, Milanés V, Villagrá J, Vinagre BM. Experimental application of hybrid fractionalorder adaptive cruise control
at low speed. IEEE Trans Contr Syst Techn 2014;22:2329–36. DOI
8. Wang X, Chen M, Zhu M, Tremont P. Development of a kinematicbased forward collision warning algorithm using an advanced driving
simulator. IEEE Trans Intell Trans Syst 2016;17:2583–91. DOI
9. Pananurak W, Thanok S, Parnichkun M. Adaptive cruise control for an intelligent vehicle. In: 2008 IEEE International Conference on
Robotics and Biomimetics; 2009. pp. 1794–99. DOI
10. Asadi B, Vahidi A. Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip
time. IEEE Trans Contr Syst Techn 2011;19:707–14. DOI
11. Chiang HH, Wu SJ, Perng JW, Wu BF, Lee TT. The humanintheloop design approach to the longitudinal automation system for an
intelligent vehicle. IEEE Trans Syst, Man, Cybern Part A: Syst Humans 2010;40:708–20. DOI
12. Akhegaonkar S, Nouvelière L, Glaser S, Holzmann F. Smart and green ACC: energy and safety optimization strategies for EVs. IEEE
Trans Syst, Man, Cybern: Syst 2018;48:142–53. DOI
13. Li S, Li K, Rajamani R, Wang J. Model Predictive MultiObjective Vehicular Adaptive Cruise Control. IEEE Trans Contr Syst Technol
2011;19:556–66. DOI
14. Hu J, Zhu J, Lei G, Platt G, Dorrell DG. Multiobjective modelpredictive control for highpower converters. IEEE Trans Energy Conv
2013;28:652–63. DOI
15. Bageshwar VL, Garrard WL, Rajamani R. Model predictive control of transitional maneuvers for adaptive cruise control vehicles. IEEE
Trans Veh Technol 2004;53:1573–85. DOI
16. Li SE, Jia Z, Li K, Cheng B. Fast online computation of a model predictive controller and its application to fuel economy–oriented adaptive
cruise control. IEEE Trans Intell Trans Syst 2015;16:1199–209. DOI
17. Corona D, De Schutter B. Adaptive cruise control for a SMART car: a comparison benchmark for MPCPWA control methods. IEEE
Trans Contr Syst Techn 2008;16:365–72. DOI
18. Moser D, Schmied R, Waschl H, del Re L. Flexible spacing adaptive cruise control using stochastic model predictive control. IEEE Trans
Contr Syst Techn 2018;26:114–27. DOI
19. Li SE, Guo Q, Xu S, Duan J, Li S, et al. Performance enhanced predictive control for adaptive cruise control system considering road
elevation information. IEEE Trans Intell Veh 2017;2:150–60. DOI
20. Gao B, Cai K, Qu T, Hu Y, Chen H. Personalized adaptive cruise control based on online driving style recognition technology and model
predictive control. IEEE Trans Veh Techn 2020;69:12482–96. DOI
21. Yang D, Zong G, Su SF. H ∞ tracking control of uncertain Markovian hybrid switching systems: a fuzzy switching dynamic adaptive
control approach. IEEE Trans Cybern 2022;52:3111–22. DOI
22. Xie X, Wei C, Gu Z, Shi K. Relaxed resilient fuzzy stabilization of discretetime TakagiSugeno systems via a higher order timevariant
balanced matrix method. IEEE Trans Fuzzy Syst 2022:1–1. DOI