Page 83 - Read Online
P. 83

Zhang et al. Intell Robot 2022;2(4):371­90  I http://dx.doi.org/10.20517/ir.2022.26  Page 389


               Conflicts of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               All the authors have consented to the publication of this manuscript.


               Copyright
               © The Author(s) 2022.



               REFERENCES
               1.  Hasenjäger M, Heckmann M, Wersing H. A survey of personalization for advanced driver assistance systems. IEEE Trans Intell Veh
                  2020;5:335–44. DOI
               2.  Li L, Wen D, Zheng N, Shen L. Cognitive cars: a new frontier for ADAS research. IEEE Trans Intell Trans Syst 2012;13:395–407. DOI
               3.  Muresan MP, Nedevschi S. Multimodal sparse LIDAR object tracking in clutter. In: 2018 IEEE 14th International Conference on
                  Intelligent Computer Communication and Processing (ICCP); 2018. pp. 215–21. DOI
               4.  Cheng J, Ju M, Zhou M, Liu C, Gao S, et al. A dynamic evolution method for autonomous vehicle groups in a highway scene. IEEE Int
                  Things J 2022;9:1445–57. DOI
               5.  Yuan T, Krishnan K, Duraisamy B, Maile M, Schwarz T. Extended object tracking using IMM approach for a real­world vehicle sensor
                  fusion system. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI); 2017. pp.
                  638–43. DOI
               6.  Guo C, Meguro J, Kojima Y, Naito T. A multimodal ADAS system for unmarked urban scenarios based on road context understanding.
                  IEEE Trans Intell Transp Syst 2015;16:1690–704. DOI
               7.  Hosseinnia SH, Tejado I, Milanés V, Villagrá J, Vinagre BM. Experimental application of hybrid fractional­order adaptive cruise control
                  at low speed. IEEE Trans Contr Syst Techn 2014;22:2329–36. DOI
               8.  Wang X, Chen M, Zhu M, Tremont P. Development of a kinematic­based forward collision warning algorithm using an advanced driving
                  simulator. IEEE Trans Intell Trans Syst 2016;17:2583–91. DOI
               9.  Pananurak W, Thanok S, Parnichkun M. Adaptive cruise control for an intelligent vehicle. In: 2008 IEEE International Conference on
                  Robotics and Biomimetics; 2009. pp. 1794–99. DOI
               10. Asadi B, Vahidi A. Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip
                  time. IEEE Trans Contr Syst Techn 2011;19:707–14. DOI
               11. Chiang HH, Wu SJ, Perng JW, Wu BF, Lee TT. The human­in­the­loop design approach to the longitudinal automation system for an
                  intelligent vehicle. IEEE Trans Syst, Man, Cybern ­ Part A: Syst Humans 2010;40:708–20. DOI
               12. Akhegaonkar S, Nouvelière L, Glaser S, Holzmann F. Smart and green ACC: energy and safety optimization strategies for EVs. IEEE
                  Trans Syst, Man, Cybern: Syst 2018;48:142–53. DOI
               13. Li S, Li K, Rajamani R, Wang J. Model Predictive Multi­Objective Vehicular Adaptive Cruise Control. IEEE Trans Contr Syst Technol
                  2011;19:556–66. DOI
               14. Hu J, Zhu J, Lei G, Platt G, Dorrell DG. Multi­objective model­predictive control for high­power converters. IEEE Trans Energy Conv
                  2013;28:652–63. DOI
               15. Bageshwar VL, Garrard WL, Rajamani R. Model predictive control of transitional maneuvers for adaptive cruise control vehicles. IEEE
                  Trans Veh Technol 2004;53:1573–85. DOI
               16. Li SE, Jia Z, Li K, Cheng B. Fast online computation of a model predictive controller and its application to fuel economy–oriented adaptive
                  cruise control. IEEE Trans Intell Trans Syst 2015;16:1199–209. DOI
               17. Corona D, De Schutter B. Adaptive cruise control for a SMART car: a comparison benchmark for MPC­PWA control methods. IEEE
                  Trans Contr Syst Techn 2008;16:365–72. DOI
               18. Moser D, Schmied R, Waschl H, del Re L. Flexible spacing adaptive cruise control using stochastic model predictive control. IEEE Trans
                  Contr Syst Techn 2018;26:114–27. DOI
               19. Li SE, Guo Q, Xu S, Duan J, Li S, et al. Performance enhanced predictive control for adaptive cruise control system considering road
                  elevation information. IEEE Trans Intell Veh 2017;2:150–60. DOI
               20. Gao B, Cai K, Qu T, Hu Y, Chen H. Personalized adaptive cruise control based on online driving style recognition technology and model
                  predictive control. IEEE Trans Veh Techn 2020;69:12482–96. DOI
               21. Yang D, Zong G, Su SF. H ∞ tracking control of uncertain Markovian hybrid switching systems: a fuzzy switching dynamic adaptive
                  control approach. IEEE Trans Cybern 2022;52:3111–22. DOI
               22. Xie X, Wei C, Gu Z, Shi K. Relaxed resilient fuzzy stabilization of discrete­time Takagi­Sugeno systems via a higher order time­variant
                  balanced matrix method. IEEE Trans Fuzzy Syst 2022:1–1. DOI
   78   79   80   81   82   83   84   85   86   87   88