Page 45 - Read Online
P. 45

Page 138                         Ortiz et al. Intell Robot 2021;1(2):131-50  I http://dx.doi.org/10.20517/ir.2021.09


               (   − K          ) is invertible, and we have

                                               −1           −        −1         −1
                                        P   +2  ≤ (   − K          )     P   +2  (   − K          )   (32)


               According to EKF,
                                                                             −  
                                                       
                                                                        −1
                                       P   +1 =      P   +2    +    1 =       (P   +2 +       1    )        
                                                       
                                                                               
                                                                          
               Thus,
                                                  −1  −          −1   −   −1  −1
                                            P   +1  =        (P   +2 +       1    )       
                                                                   
                                                                        
               By the following matrix inversion lemma,
                                                                     −1 −1
                                               (Γ −1  + Ω) −1  = Γ − Γ(Γ + Ω ) Γ
               where Γ and Ω are two non-singular. matrices,

                                                                     
                                                                          −1
                                     P −1  =    −    [P −1  − P −1  (P −1  +       −1       ) P −1  ]   −1
                                        +1         +2     +2    +2              +2    
               Using Equation (32) and defining    = (   − K          ),

                                                   P −1  ≤    −       −    [P −1
                                                                     +2
                                               −1  −1    +1         −1  −1 −    −1  −1  −1            (33)
                                                     −1
                                      − P   +2     (P   +             )    P  ]      
                                                       +2      1            +2     
               Now,
                                            P −1  = P −1  (   − K          ) −1  = P −1     −1
                                                +2     +2                +2

               Hence,
                                           
                                         
                                                                    
                                                                          −1 −  
                                           P −1           ≤ (   − (   + P −1        −1       )     )P −1
                                               +1               +2                 +2
               Combining the last term of Equation (29) with the first term on the right side of Equation (25),
                                                       
                                                          
                                          (  ) (   − K          )    P −1        (   − K          )   (  )
                                                              +1
                                       ≤    (  ) (1 − (1 + ¯ ¯   /  ) (1 +    ¯   +   ) )P −1     (  )  (34)
                                                                 ¯
                                                           −1
                                                        2
                                                                       −1
                                                       
                                               
    
       2                 +2
                                       ≤ (1 −   ) P −1 
  k   (  )k

                                                    +2
                           p                    p                     p
                                                                                   ¯
                                                              
               where k      k =      (            ) ≤ ¯  , k      k =      (            ) ≤ ¯, kK    k =      (K   K    ) ≤   ,    = Λ  ,      ≤ P   +2 ≤
                                                                                         
 −1
                ¯     ,      ≤    1 , and
                                                            1
                                                  =                    < 1
                                                                 ¯
                                                         
                                                         2
                                                                    
                                                   (1 + ¯ ¯   /  )(1 +    ¯ +   )
               Combining Equation (26), the first term of Equation (29), and Equation (34),

                                                   +1 = (1 −   ) P −1 
  k   (  )k 2

                                                                +2
                                              +   max [Λ] ¯    +    max P −1  ( ¯    + ¯   )
                                                                   +1                                 (35)
                                              ≤ (1 −   )   (  ) P −1     (  )
                                                               +2
                                              +   max [Λ] ¯   +    max P −1  ( ¯   + ¯  )
                                                                   +1
   40   41   42   43   44   45   46   47   48   49   50