Page 56 - Read Online
P. 56

Page 10 of 16                   Wang et al. Intell Robot 2023;3(3):479-94  I http://dx.doi.org/10.20517/ir.2023.26


                   
                                           ˆ
                                ˆ
                     (  ) +     (  ) +    sgn(  (  )) −    +    = 0
                          ¤
                       ˆ             ˆ
                ¤   (  ) = −ℑ sgn(  (  )) − (−   +   )
               The Lyapunov stability theory is used to analyze the stability of the system, and the candidate Lyapunov func-
               tion is selected as
                      ˜            1      1     ˜    ˜     1      1        1       1 ˜ 2
                               e
                      (  ,   , ˜  , ˜  , ˜  , ℑ) =       +  tr       +  ˜    ˜   +  ˜    ˜   +  ˜    ˜   +    
                                   2     2             2        2         2       2   ℑ

                                        
                        ˜
                                                e    ¤
                                                   ˜
                                         
                                                                                   ℑ  
                                                                               ¤
                                                                       ¤
                                                              ¤
                   ¤
                                 e
                        (  ,   , ˜  , ˜  , ˜  , ℑ) =    ¤ +  1  tr       +  1  ˜    ˜   +  1  ˜    ˜   +  1  ˜    ˜   +  1 ˜ ˜ ¤
                                                                                      
                                                 ˆ          ˆ
                                           
                                          ¤ =    (−ℑ sgn(  ) − (−   +   ))

                                          e    ˆ
                                                                   ˆ   
                                                          ˆ   
                                                 ˆ   
                                ˆ
                                                        
                         =        −   sgn(  ) −    Φ +    Φ    e +    Φ    e   +    Φ    e+ Θ
                                                                          
                                            ˜    ˆ
                                                                           ˆ   
                                                                ˆ   
                            ˆ
                                                    ˆ   
                                     
                                                                                
                         = −  k  k −    Θ −       Φ −       Φ    ˜   −       Φ    ˜   −       Φ    ˜
                                                                      Í                      Í
                                                                 ˜
                                                                                                       ˆ
                                                                                       ˜    ˆ
                                                              e    ¤
                                                                                                    
                                                                               
                                                                               ¤
               Considering the structural characteristics of RNNs, tr       =         e    e   , and       Φ =               e Φ, we
                                                                          =1                    =1    
               can obtain that
                         ¤             e                      e    ˆ     ˆ            ˆ        ˆ       
                             e
                              (  ,   , e,e  , ˜  , =) = −   k  k −    Θ −       Φ −       Φ    e −       Φ    e   −       Φ    e
                                              =

                                                                  e ˜
                          1            1        1        1      1 ˜ ¤
                                  ˜
                               ˜    ¤
                                                              ¤
                                                      ¤
                                              ¤
                        +   tr       +    ˜    ˜   +  ˜    ˜   +  ˜    ˜   +  ==
                                                                   ℑ
                            ˆ          Í           ˆ     ˆ         ˆ          ˆ   
                        = −=k  k −    Θ −         e    Φ −       Φ    e   −       Φ    e   −       Φ    e  
                                           =1    
                          1  Í          1        1     ¤  1      1 ˜ ¤                                 (26)
                                                                       
                                              ¤
                                     ¤
                                                               ¤
                        +        e    ˜      +  e    ˜   +  e   e   +  ˜    ˜   +  e˜
                                   =1                                 

                            Í                               ¤     
                                      ˆ
                                                           =   −    Θ
                        = −         e              Φ −  1 ¤  =  1 ˆ e
                                            e       −    k  k +
                               =1
                                                           ℑ
                                                            ˆ   
                                                                       e− Φ      
                                e    − Φ       + e  
                                1 ¤     ˆ          1 ¤ ˜    − Φ       + ˜       1 ¤        ˆ   
                        +e                                                    
                                                                          
                                                                                      ¤
                                                                                ˜
                                                                                ¤
                                                                                      ˆ
                                                                                      ˆ ¤
                                                                                  
                                                                                                     ¤ ¤
               According to the basic principle of SMC, there is   (  ) → 0 when    → ∞, thus, e = −  , ˜ ˜   = − ˆ  , ˜   = −ˆ  , ˜   =
                                                                                              ¤ ¤
                                                                                   
                   ¤
               − ˆ  , = = −  .
                        ¤
                        ˆ
                 ¤ e
               Let the upper bound error be defined as ℑ = ℑ − ℑ; on the other hand, by substituting the adaptive regulation
                                                        b
                                                 e
               law (23) into (26), we can obtain that
                              
                                   
                     ¤
                                   e
                          e
                           (  ,   , e,e  , e, =)

                        Í             1          ˆ      1 e           
                                  ˆ
                                             ˆ
                                                          e
                     = −     e           Φ −                 − =k  k +  =   k  k −    Θ
                            =1                                 =
                                                                                                       (27)
                                                                                              ˆ   
                                                                     ˆ   
                                           ˆ   
                                    ˆ
                                                                                       ˆ
                                                              ˆ
                        
                                                                            
                                   
                     +e     1        Φ      − Φ       + e       1        Φ       − Φ       + e     1        Φ      − Φ      
                                          
                                                                                             
                                                                                      
                                                                    
                                                             
                                                                                   
                                      
                           ˆ
                     = (= − =) |   k −    Θ ≤ 0
                       e
               Hence, from (41), it can be seen that the Lyapunov function is not increasing but bounded in its domain of defi-
               nition;thatis,      (0) =   (  (0),   (0), e(0),e  (0), e(0), =(0)),and      (  ) =   (  (  ),   (  ), e(  ),e  (  ), e(  ), =(  )).
                                                                                                    
                                                          
                                                
                                                                                          
                                                                                                      e
                                                             e
                                         e
                                                                                    e
               Let   (  ) = (kΘk −   )  (  ). Considering   (  ) is bounded, there exists
                                                                      
                                       (  ) ≤ kΘΘk − =)k(  )k ≤ −      (  ,   , e,e  , ˜  , =).
                                                             ¤
                                                                           e
                                                                  e
                                     ¯           ¯                                                     (28)
                                                                  
                                                             
                                                    ¤
                                                        e
                                                                 e
                                         (  )     ≤ −        (  ,   , e,e  , e, ∃)     =       (0) −       (  ).
                                     0            0
   51   52   53   54   55   56   57   58   59   60   61