Page 54 - Read Online
P. 54

Page 8 of 16                    Wang et al. Intell Robot 2023;3(3):479-94  I http://dx.doi.org/10.20517/ir.2023.26





































                                                  Figure 3. The control structure.




                                                             ∗
                                                          ∗
                                                  ∗
                                                                ∗
                                                 =    +    =    Φ (   ,    ,    ) +   ,                (17)
                                                                   ∗
                                                                      ∗
               where   , Φ ,    ,    ,    arethedesiredvaluesofnetworkparameters-  , Φ,   ,   ,   . Supposethat   , Φ ,    ,    ,     ∗
                                ∗
                                   ∗
                             ∗
                                                                                                     ∗
                                                                                                  ∗
                                                                                                            ∗
                                                                                                        ∗
                          ∗
                      ∗
               are all bounded, k   k ≤   , kΦ k ≤ Φ, k   k ≤ ¯  , k   k ≤ ¯  , and k   k ≤ ¯.   , Φ, ¯  , ¯  , ¯ are the correspond-
                                                                               ¯ ¯
                                     ¯
                                              ¯
                                                                        ∗
                                                                               
                                                                                           
                                                            ∗
                                ∗
                                         ∗
                                                   ∗
               ing upper bound of each parameter, and    is the approximation error, which satisfies k   k ≤   . However, the
                                                                                             ¯
                                                                                        ∗
               desired values    , Φ ,    ,    ,    ,    are not available.
                                    ∗
                                ∗
                             ∗
                                         ∗
                                            ∗
                                       ∗
               Inspired by pure-motion tracking, some notations are defined as ,
                                                       (  )  =    (  ) +   (  )   +    ˆ               (18)
                                                   ˆ   ˆ ˆ
                                                      =   Φ( ˆ   , ˆ   , ˆ   )
               where   , Φ, ˆ  , ˆ  , ˆ are the estimated values of    , Φ ,    ,    ,    .    is the estimation of the system error.
                     ˆ ˆ
                                                                       ˆ
                                 
                                                        ∗
                                                            ∗
                                                               ∗
                                                                  ∗
                                                                     ∗
               By adjusting the adaptive parameters of RNNs, the hybrid motion/force controller will approximate unknown
               dynamic functions. From the part of error estimation    =   Φ( ˆ  , ˆ  , ˆ), the error is defined by
                                                             ˆ
                                                                ˆ ˆ
                                                                           
                                                    ˆ
                                                =    −    =    +    −    ˆ
                                                        ∗
                                             e
                                                ∗  
                                                       ˆ    ˆ
                                             =    Φ −    Φ +   
                                                    ∗

                                                                 

                                                ∗  
                                                             ˜
                                             =    Φ −    −       Φ − Φ +   ,                           (19)
                                                    ∗
                                                                   ∗
                                                         ∗
                                                                      e
                                                      e   
                                             =    Φ −    Φ +    Φ +   
                                                          ∗
                                                             e    e
                                                ∗   e

                                                      e   
                                               e    ˆ
                                             =    Φ +    +     Φ +   
                                                           ˆ    e
                                                     e    ˆ
                                             =    Φ +    Φ +    Φ +   
                                               ˜    e
                                                            ˆ    e
   49   50   51   52   53   54   55   56   57   58   59