Page 39 - Read Online
P. 39

Page 266                         Sun et al. Intell Robot 2023;3(3):257-73  I http://dx.doi.org/10.20517/ir.2023.17




















                                           Figure 3. Kinematics model of path following control.



               4. VERIFICATION EXAMPLES
               In this section, simulation results are provided to verify the designed stabilization method under the SS-ETC
               scheme for path following control of AGVs. The kinematics model of AGVs is depicted in Figure 3, and the
               detailed parameters can be browed from [32]  with    = 1500    ,       = 2500     ·    ,       = 0.8  ,       = 1.3  ,
                                                                                    2
                     = 1.4  ,       = 40000  /      ,       = 40000  /      ,       = 25    /ℎ.
                                             [                    ]
               The initial state is given by   (0) =  −0.1 0 −0.01 0.2 , the external disturbance is   (  ) = 0.01 sin(  )
               during    ∈ [30  , 45  ].

               Let       = 0.1,       = 0.2,    = 0.32,    = 1. For comparisons, the controller’s gain    0 based on time delay method
               is given by
                                              [                                ]
                                            0 =  −0.006 −0.136 −0.036 −0.0408                          (15)
               Then according to Algorithm 1 and by solving LMIs (13) in Theorem 2, the controller gain for SS-ETC is
               obtained that       = 0.23 and

                                             [                                  ]
                                           1 =  −0.001 −0.0806 −0.0202 −0.0254                         (16)
               with
                                                1.7610  −0.0237 −0.1534   0.1880  
                                                                                 
                                                                                 
                                           8   −0.0237  0.2489   −0.4727 −0.4127 
                                     Φ = 10 ×                                     .
                                               −0.1534 −0.4727   0.9203   0.7671 
                                                                                 
                                               0.1880   −0.4127  0.7671   0.6969 
                                                                                 
               By setting sampling period ℎ = 0.1   and simulation length    = 150  , the following simulation results for
               comparisons are obtained.
               Firstly, the state responses of the path following control are compared under a time-triggered scheme, static
               ETC scheme, and SS-ETC scheme, respectively. The simulations are given as follows.  From the above
               simulation results from Figure 4 ∼ Figure 7, the control performances, which include convergence and stability
               prosperities, are indeed improved under the proposed SS-ETC scheme by comparing with static ETC scheme.

               Then, we will observe the control performance with the given index    = ||  (  )|| . The detailed performances
                                                                                  2
               are given in Table 2.


               Table 2 shows that the control performance under SS-ETC is still less than a time-triggered control scheme.
               This implies that the functional safety is well trade-off between the time-triggered control scheme and static
               ETC scheme when the SS-ETC scheme is adopted.
   34   35   36   37   38   39   40   41   42   43   44