Page 134 - Read Online
P. 134
Page 12 of 12 Tai et al. Hepatoma Res 2020;6:74 I http://dx.doi.org/10.20517/2394-5079.2020.54
emphasis on the clearance of hepatitis B e antigen before 3 years of age. Hepatology 1995;22:1387-92.
27. Hsu YS, Chien RN, Yeh CT, et al. Long-term outcome after spontaneous HBeAg seroconversion in patients with chronic hepatitis B.
Hepatology 2002;35:1522-7.
28. Lin CL, Kao JH. Natural history of acute and chronic hepatitis B: The role of HBV genotypes and mutants. Best Pract Res Clin
Gastroenterol 2017;31:249-55.
29. Chang MH, Sung JL, Lee CY, et al. Factors affecting clearance of hepatitis B e antigen in hepatitis B surface antigen carrier children. J
Pediatr 1989;115:386-90.
30. Hadziyannis SJ. Natural history of chronic hepatitis B in Euro-Mediterranean and African countries. J Hepatol 2011;55:183-91.
31. Iorio R, Giannattasio A, Cirillo F, D’ Alessandro L, Vegnente A. Long-term outcome in children with chronic hepatitis B: a 24-year
observation period. Clin Infect Dis 2007;45:943-9.
32. Liu S, Koh SS, Lee CG. Hepatitis B virus X protein and hepatocarcinogenesis. Int J Mol Sci 2016;17:E940.
33. Tu T, Budzinska MA, Vondran FWR, Shackel NA, Urban S. Hepatitis B virus DNA integration occurs early in the viral life cycle in
an in vitro infection model via sodium taurocholate cotransporting polypeptide-dependent uptake of enveloped virus particles. J Virol
2018;92:e02007-17
34. Budzinska MA, Shackel NA, Urban S, Tu T. Cellular genomic sites of hepatitis B virus DNA integration. Genes (Basel) 2018;9:E365.
35. Yang L, Ye S, Zhao X, et al. Molecular characterization of HBV DNA integration in patients with hepatitis and hepatocellular carcinoma.
J Cancer 20187;9:3225-35.
36. An P, Xu J, Yu Y, Winkler CA. Host and viral variation in HBV-related hepatocellular carcinoma. Front genet 2018;9:261
37. Lazarevic I. Clinical implications of hepatitis B virus mutations: recent advances. World J Gastroenterol 2014;20:7653-64.
38. O’Brien TR, Kohaar I, Pfeiffer RM, et al. Risk alleles for chronic hepatitis B are associated with decreased mRNA expression of HLA-
DPA1 and HLA-DPB1 in normal human liver. Genes Immun 2011;12:428-33.
39. Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev
Gastroenterol Hepatol 2019;16:589-604.
40. Yan H, Zhong G, Xu G, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus.
Elife 2012;1:e00049.
41. Li N, Zhang P, Yang C, et al. Association of genetic variation of sodium taurocholate cotransporting polypeptide with chronic hepatitis B
virus infection. Genet Test Mol Biomarkers 2014;18:425-9.
42. Posuwan N, Payungporn S, Tangkijvanich P, et al. Genetic association of human leukocyte antigens with chronicity or resolution of
hepatitis B infection in thai population. PLoS One 2014;9:e86007.
43. Kumar V, Kato N, Urabe Y, et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular
carcinoma. Nat Genet 2011;43:455
44. Luo X, Wang Y, Shen A, Deng H, Ye M. Relationship between the rs2596542 polymorphism in the MICA gene promoter and HBV/HCV
infection-induced hepatocellular carcinoma: a meta-analysis. BMC Med Genet 2019;20:142.
45. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature
2001;413:165-71.
46. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature
2002;419:734-8.
47. Zhang H, Zhai Y, Hu Z, et al. Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular
carcinoma in chronic hepatitis B virus carriers. Nat Genet 2010;42:755-8.
48. Luo YY, Zhang HP, Huang AL, Hu JL. Association between KIF1B rs17401966 genetic polymorphism and hepatocellular carcinoma
susceptibility: an updated meta-analysis. BMC Med Genet 2019;20:59.
49. Kong XN, Horiguchi N, Mori M, Guo B. Cytokines and STATs in liver fibrosis. Front Physiol 2012;3:69.
50. Gao B. Cytokines, STATs and liver disease. Cell Mol Immunol 2005;2:92-100.
51. Shi H, He H, Ojha SC, et al. Association of STAT3 and STAT4 polymorphisms with susceptibility to chronic hepatitis B virus infection
and risk of hepatocellular carcinoma: a meta-analysis. Biosci Rep 2019;39:BSR20190783
52. Gao Y, He Y, Ding J, et al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3’ untranslated
region confers risk for hepatocellular carcinoma. Carcinogenesis 2009;30:2064-9.
53. Du Y, Han X, Pu R, et al. Association of miRNA-122-binding site polymorphism at the interleukin-1 α gene and its interaction with
hepatitis B virus mutations with hepatocellular carcinoma risk. Front Med 2014;8:217-26.
54. Kim YS, Cheong JY, Cho SW, et al. A functional SNP of the Interleukin-18 gene is associated with the presence of hepatocellular
carcinoma in hepatitis B virus-infected patients. Dig Dis Sci 2009;54:2722-8.
55. Zhu SL, Zhao Y, Hu XY, et al. Genetic polymorphisms -137 (rs187238) and -607 (rs1946518) in the interleukin-18 promoter may not be
associated with development of hepatocellular carcinoma. Sci Rep 2016;6:39404.
56. Qu LS, Jin F, Guo YM, et al. Nine susceptibility loci for hepatitis B virus-related hepatocellular carcinoma identified by a pilot two-stage
genome-wide association study. Oncol Lett 2016;11:624-32.