Page 113 - Read Online
P. 113

Page 16 of 16                                        Brunsing et al. Hepatoma Res 2020;6:59  I  http://dx.doi.org/10.20517/2394-5079.2020.50

               58.   Gadolinium Contrast-enhanced Abbreviated MRI (AMRI) vs. Standard Ultrasound for Hepatocellular Carcinoma (HCC) Surveillance
                   in Patients With Cirrhosis - Full Text View - ClinicalTrials.gov. Available from: http://clinicaltrials.gov/ct2/show/NCT04288323. [Last
                   accessed on 13 Jul 2020]
               59.   Goossens N, Singal AG, King LY, Andersson KL, Fuchs BC, et al. Cost-effectiveness of risk score-stratified hepatocellular carcinoma
                   screening in patients with cirrhosis. Clin Transl Gastroenterol 2017;8:e101.
               60.   Goldberg DS, Taddei TH, Serper M, Mehta R, Dieperink E, et al. Identifying barriers to hepatocellular carcinoma surveillance in a
                   national sample of patients with cirrhosis. Hepatology 2017;65:864-74.
               61.   Chalasani N, Horlander JC, Said A, Hoen H, Kopecky KK, et al. Screening for hepatocellular carcinoma in patients with advanced
                   cirrhosis. Am J Gastroenterol 1999;94:2988-93.
               62.   Goldberg D, Valderrama A, Kamalakar R, Sansgiry S, Babajanyan S, et al. Hepatocellular carcinoma surveillance among cirrhotic
                   patients with commercial health insurance. J Clin Gastroenterol 2016;50:258-65.
               63.   Zech CJ, Ba-Ssalamah A, Berg T, Chandarana H, Chau GY, et al. Consensus report from the 8th international forum for liver magnetic
                   resonance imaging. Eur Radiol 2020;30:370-82.
               64.   Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, et al. Controlled aliasing in volumetric parallel imaging (2D
                   CAIPIRINHA). Magn Reson Med 2006;55:549-56.
               65.   Low RN, Bayram E, Panchal NJ, Estkowski L. High-resolution double arterial phase hepatic MRI using adaptive 2D centric view
                   ordering: initial clinical experience. AJR Am J Roentgenol 2010;194:947-56.
               66.   Ikram NS, Yee J, Weinstein S, Yeh BM, Corvera CU, et al. Multiple arterial phase MRI of arterial hypervascular hepatic lesions: improved
                   arterial phase capture and lesion enhancement. Abdom Radiol (NY). 2017;42:870-6.
               67.   Brodsky EK, Bultman EM, Johnson KM, Horng DE, Schelman WR, et al. High spatial and high temporal resolution dynamic contrast-
                   enhanced perfusion imaging of the liver with time-resolved 3D-radial MRI. Magn Reson Med 2014;71:934-41.
               68.   Saranathan M, Rettmann DW, Hargreaves BA, Clarke SE, Vasanawala SS. Differential subsampling with cartesian ordering (DISCO): a
                   high spatio-temporal resolution dixon imaging sequence for multiphasic contrast enhanced abdominal imaging. J Magn Reson Imaging
                   2012;35:1484-92.
               69.   Shaikh J, Stoddard PB, Levine EG, Roh AT, Saranathan M, et al. View-sharing artifact reduction with retrospective compressed sensing
                   reconstruction in the context of contrast-enhanced liver MRI for hepatocellular carcinoma (HCC) screening. J Magn Reson Imaging
                   2019;49:984-93.
               70.   Xu B, Spincemaille P, Chen G, Agrawal M, Nguyen TD, et al. Fast 3D contrast enhanced MRI of the liver using temporal resolution
                   acceleration with constrained evolution reconstruction. Magn Reson Med 2013;69:370-81.
               71.   Cheng JY, Zhang T, Ruangwattanapaisarn N, Alley MT, Uecker M, et al. Free-breathing pediatric MRI with nonrigid motion correction
                   and acceleration. J Magn Reson Imaging 2015;42:407.
               72.   Hedderich DM, Weiss K, Spiro JE, Giese D, Beck GM, et al. Clinical evaluation of free-breathing contrast-enhanced T1w MRI of the
                   liver using pseudo golden angle radial k-space Sampling. Rofo 2018;190:601-9.
               73.   Zeng DY, Shaikh J, Holmes S, Brunsing RL, Pauly JM, et al. Deep residual network for off-resonance artifact correction with application
                   to pediatric body MRA with 3D cones. Magnetic Resonance in Medicine. Magn Reson Med 2019;82:1398-411.
               74.   Kim YC, Min JH, Kim YK, Lee SJ, Ahn S, et al. Intra-individual comparison of gadolinium-enhanced MRI using pseudo-golden-angle
                   radial acquisition with gadoxetic acid-enhanced MRI for diagnosis of HCCs using LI-RADS. Eur Radiol 2019;29:2058-68.
               75.   Choi JS, Kim MJ, Chung YE, Kim KA, Choi JY, et al. Comparison of breathhold, navigator-triggered, and free-breathing diffusion-
                   weighted MRI for focal hepatic lesions. J Magn Reson Imaging 2013;38:109-18.
               76.   Szklaruk J, Son JB, Wei W, Bhosale P, Javadi S, et al. Comparison of free breathing and respiratory triggered diffusion-weighted imaging
                   sequences for liver imaging. World J Radiol 2019;11:134-43.
               77.   Ichikawa S, Motosugi U, Tamada D, Wakayama T, Sato K, et al. Improving the quality of diffusion-weighted imaging of the left hepatic
                   lobe using weighted averaging of signals from multiple excitations. Magn Reson Med Sci 2019;18:225-32.
               78.   Zhang Y, Peña-Nogales Ó, Holmes JH, Hernando D. Motion-robust and blood-suppressed M1-optimized diffusion MR imaging of the
                   liver. Magn Reson Med 2019;82:302-11.
               79.   Rauh SS, Riexinger AJ, Ohlmeyer S, Hammon M, Saake M, et al. A mixed waveform protocol for reduction of the cardiac motion artifact
                   in black-blood diffusion-weighted imaging of the liver. Magn Reson Imaging 2020;67:59-68.
               80.   Aliotta E, Wu HH, Ennis DB. Convex optimized diffusion encoding (CODE) gradient waveforms for minimum echo time and bulk
                   motion-compensated diffusion-weighted MRI. Magn Reson Med 2017;77:717-29.
               81.   Aliotta E, Moulin K, Ennis DB. Eddy current-nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion
                   tensor imaging with short echo times. Magn Reson Med 2018;79:663-72.
               82.   Hasenstab KA, Cunha GM, Higaki A, Ichikawa S, Wang K, et al. Fully automated convolutional neural network-based affine algorithm
                   improves liver registration and lesion co-localization on hepatobiliary phase T1-weighted MR images. Eur Radiol Exp 2019;3:43.
               83.   Chen F, Cheng JY, Taviani V, Sheth VR, Brunsing RL, et al. Data-driven self-calibration and reconstruction for non-cartesian wave-
                   encoded single-shot fast spin echo using deep learning. J Magn Reson Imaging 2020;51:841-53.
               84.   Cunha GM, Hasenstab KA, Higaki A, Wang K, Delgado T, et al. Convolutional neural network-automated hepatobiliary phase adequacy
                   evaluation may optimize examination time. Eur J Radiol 2020;124:108837.
   108   109   110   111   112   113   114   115   116   117   118