Page 112 - Read Online
P. 112

Brunsing et al. Hepatoma Res 2020;6:59  I  http://dx.doi.org/10.20517/2394-5079.2020.50                                      Page 15 of 16

                   acid-enhanced MRI for hepatocellular carcinoma surveillance. AJR Am J Roentgenol 2015;204:527-35.
               29.   Besa C, Lewis S, Pandharipande PV, Chhatwal J, Kamath A, et al. Hepatocellular carcinoma detection: diagnostic performance of a
                   simulated abbreviated MRI protocol combining diffusion-weighted and T1-weighted imaging at the delayed phase post gadoxetic acid.
                   Abdom Radiol 2017;42:179-90.
               30.   Tillman BG, Gorman JD, Hru JM, Lee MH, King MC, et al. Diagnostic per-lesion performance of a simulated gadoxetate disodium-
                   enhanced abbreviated MRI protocol for hepatocellular carcinoma screening. Clin Radiol 2018;73:485-93.
               31.   Brunsing RL, Chen DH, Schlein A, Wolfson T, Gamst A, et al. Gadoxetate-enhanced abbreviated MRI for hepatocellular carcinoma
                   surveillance: preliminary experience. Radiol Imaging Cancer 2019;1:e190010.
               32.   Park SH, Kim B, Kim SY, Shim YS, Kim JH, et al. Abbreviated MRI with optional multiphasic CT as an alternative to full-sequence
                   MRI: LI-RADS validation in a HCC-screening cohort. Eur Radiol 2020;30:2302-11.
               33.   Canellas R, Rosenkrantz AB, Taouli B, Sala E, Saini S, et al. Abbreviated MRI protocols for the abdomen. Radiographics 2019;39:744-58.
               34.   Sutherland T, Watts J, Ryan M, Galvin A, Temple F, et al. Diffusion-weighted MRI for hepatocellular carcinoma screening in chronic
                   liver disease: direct comparison with ultrasound screening. J Med Imaging Radiat Oncol 2017;61:34-9.
               35.   Hecht EM, Holland AE, Israel GM, Hahn WY, Kim DC, et al. Hepatocellular carcinoma in the cirrhotic liver: gadolinium-enhanced 3D
                   T1-weighted MR imaging as a stand-alone sequence for diagnosis. Radiology 2006;239:438-47.
               36.   McNamara MM, Thomas JV, Alexander LF, Little MD, Bolus DN, et al. Diffusion-weighted MRI as a screening tool for hepatocellular
                   carcinoma in cirrhotic livers: correlation with explant data-a pilot study. Abdom Radiol (NY) 2018;43:2686-92.
               37.   Lima PH, Fan B, Bérubé J, Cerny M, Olivié D, et al. Cost-utility analysis of imaging for surveillance and diagnosis of hepatocellular
                   carcinoma. AJR Am J Roentgenol 2019;17:1-9.
               38.   Cerny M, Bergeron C, Billiard JS, Murphy-Lavallée J, Olivié D, et al. LI-RADS for MR imaging diagnosis of hepatocellular carcinoma:
                   performance of major and ancillary features. Radiology 2018;288:118-28.
               39.   Park MS, Kim S, Patel J, Hajdu CH, Do RKG, et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-
                   enhanced magnetic resonance imaging in pretransplant patients. Hepatology 2012;56:140-8.
               40.   Zhang T, Huang ZX, Wei Y, Jiang HY, Chen J, et al. Hepatocellular carcinoma: Can LI-RADS v2017 with gadoxetic-acid enhancement
                   magnetic resonance and diffusion-weighted imaging improve diagnostic accuracy? World J Gastroenterol 2019;25:622-31.
               41.   Basha MAA, Refaat R, Mohammad FF, Khamis MEM, El-Maghraby AM, et al. The utility of diffusion-weighted imaging in improving
                   the sensitivity of LI-RADS classification of small hepatic observations suspected of malignancy. Abdom Radiol 2019;44:1773-84.
               42.   Min JH, Kim YK, Choi SY, Jeong WK, Lee WJ, et al. Differentiation between cholangiocarcinoma and hepatocellular carcinoma with
                   target sign on diffusion-weighted imaging and hepatobiliary phase gadoxetic acid-enhanced MR imaging: classification tree analysis
                   applying capsule and septum. Eur J Radiol 2017;92:1-10.
               43.   Park HJ, Kim YK, Park MJ, Lee WJ. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging for
                   differentiation from hepatocellular carcinoma. Abdom Imaging 2013;38:793-801.
               44.   Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced
                   T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2013;
                   270:834-41.
               45.   Choi JW, Moon WJ. Gadolinium deposition in the brain: current updates. Korean J Radiol 2019;20:134-47.
               46.   Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, et al. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic
                   resonance. J Cardiovasc Magn Reson 2012;14:31.
               47.   Shankar S, Kalra N, Bhatia A, Srinivasan R, Singh P, et al. Role of diffusion weighted imaging (DWI) for hepatocellular carcinoma (HCC)
                   detection and its grading on 3T MRI: a prospective study. J Clin Exp Hepatol 2016;6:303-10.
               48.   Chandarana H, Taouli B. Diffusion and perfusion imaging of the liver. Eur J Radiol 2010;76:348-58.
               49.   Saito K, Moriyasu F, Sugimoto K, Nishio R, Saguchi T, et al. Histological grade of differentiation of hepatocellular carcinoma:
                   comparison of the efficacy of diffusion-weighted MRI with T2-weighted imaging and angiography-assisted CT. J Med Imaging Radiat
                   Oncol 2012;56:261-9.
               50.   An C, Kim DY, Choi JY, Han KH, Roh YH, et al. Noncontrast magnetic resonance imaging versus ultrasonography for hepatocellular
                   carcinoma surveillance (MIRACLE-HCC): study protocol for a prospective randomized trial. BMC Cancer 2018;24:18.
               51.   Pinho DF, Lev-Cohain N, Awdeh H, Xi Y, Khatri G, et al. Optimization of breathing instructions and timing of late arterial phase
                   acquisition on gadobutrol-enhanced MRI of the liver. Clinical Imaging 2016;40:1274-9.
               52.   Contrast Manual. American College of Radiology; 2020. Available from: https://www.acr.org/Clinical-Resources/Contrast-Manual. [Last
                   accessed on 13 Jul 2020]
               53.   Wald C, Russo MW, Heimbach JK, Hussain HK, Pomfret EA, et al. New OPTN/UNOS policy for liver transplant allocation:
                   standardization of liver imaging, diagnosis, classification, and reporting of hepatocellular carcinoma. Radiology 2013;266:376-82.
               54.   Ultrasound LI-RADS v2017. American College of Radiology. Available from: https://www.acr.org/Clinical-Resources/Reporting-and-
                   Data-Systems/LI-RADS/Ultrasound-LI-RADS-v2017. [Last accessed on 13 Jul 2020]
               55.   Nassif A, Jia J, Keiser M, Oswald S, Modess C, et al. Visualization of hepatic uptake transporter function in healthy subjects by using
                   gadoxetic acid-enhanced MR imaging. Radiology 2012;264:741-50.
               56.   Sano K, Ichikawa T, Motosugi U, Sou H, Muhi AM, et al. Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-
                   enhanced MR imaging. Radiology 2011;261:834-44.
               57.   Rosenkrantz AB, Campbell N, Wehrli N, Triolo MJ, Kim S. New OPTN/UNOS classification system for nodules in cirrhotic livers
                   detected with MR imaging: effect on hepatocellular carcinoma detection and transplantation allocation. Radiology 2014;274:426-33.
   107   108   109   110   111   112   113   114   115   116   117