Page 38 - Read Online
P. 38
Zhang et al. Energy Mater 2024;4:400043 https://dx.doi.org/10.20517/energymater.2023.102 Page 11 of 12
anode for lithium-ion batteries. Chem Eng J 2023;469:143677. DOI
7. Xu Q, Sun JK, Yu ZL, et al. SiO encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv Mater
x
2018;30:e1707430. DOI PubMed
8. Padwal C, Pham HD, Hoang LTM, Mundree S, Dubal D. Deep eutectic solvents assisted biomass pre-treatment to derive sustainable
anode materials for lithium-ion batteries. Sustain Mater Techno 2023;35:e00547. DOI
9. Zhou X, Liu Y, Ren Y, et al. Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in
lithium-ion batteries. Adv Funct Mater 2021;31:2101145. DOI
10. Liu Z, Zhao Y, He R, et al. Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces
for durable lithium storage. Energy Storage Mater 2019;19:299-305. DOI
11. Guo C, Xie Y, Pan K, Li L. MOF-derived hollow SiOx nanoparticles wrapped in 3D porous nitrogen-doped graphene aerogel and their
superior performance as the anode for lithium-ion batteries. Nanoscale 2020;12:13017-27. DOI
12. Chen L, Zheng J, Lin S, et al. Synthesis of SiOx/C composite nanosheets as high-rate and stable anode materials for lithium-ion
batteries. ACS Appl Energy Mater 2020;3:3562-8. DOI
13. Qiu J, Guo J, Li J, et al. Insight into the contribution of the electrolyte additive LiBF in high-voltage LiCoO ||SiO/C pouch cells. ACS
4 2
Appl Mater Interfaces 2023;15:56918-29. DOI PubMed
+
14. Zhang Z, Zhang Y, Ye M, Tang Y, Liu X, Li CC. An in situ constructed Li -conductive interphase enables high-capacity and high-rate
SiO /C anode. J Power Sources 2022;542:231795. DOI
x
15. Wang H, Que X, Liu Y, et al. Facile synthesis of yolk-shell structured SiO /C@Void@C nanospheres as anode for lithium-ion
x
batteries. J Alloy Compd 2021;874:159913. DOI
16. Guo W, Yan X, Hou F, et al. Flexible and free-standing SiO /CNT composite films for high capacity and durable lithium ion batteries.
x
Carbon 2019;152:888-97. DOI
17. Zhang Y, Wang WP, Zhao Y, et al. Exacerbated high-temperature calendar aging of SiOx-graphite electrode induced by interparticle
lithium crosstalk. Adv Funct Mater 2023;34:2310309. DOI
18. Sun M, Xu Z, Liu K, et al. Construction of rice husk-derived SiO nanoparticles encapsulated with graphene aerogel hybrid for high-
x
performance lithium ion batteries. Electrochim Acta 2022;422:140572. DOI
19. Son Y, Kim N, Lee Y, et al. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy
lithium-ion batteries. Adv Mater 2020;32:2003286. DOI
20. Liu S, Zhang X, Yan P, et al. Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium
ion batteries. ACS Nano 2019;13:8854-64. DOI PubMed
21. Fang T, Liu H, Luo X, et al. Accommodation of two-dimensional SiOx in a point-to-plane conductive network composed of graphene
and nitrogen-doped carbon for robust lithium storage. ACS Appl Mater Interfaces 2022;14:53658-66. DOI PubMed
22. Zhang K, Du W, Qian Z, et al. SiO embedded in N-doped carbon nanoslices: a scalable synthesis of high-performance anode material
x
for lithium-ion batteries. Carbon 2021;178:202-10. DOI
23. Xue H, Cheng Y, Gu Q, et al. An SiOx anode strengthened by the self-catalytic growth of carbon nanotubes. Nanoscale 2021;13:3808-
16. DOI
24. Tian H, Tian H, Yang W, et al. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries.
Adv Funct Mater 2021;31:2101796. DOI
25. Xie H, Hou C, Qu Y, et al. N-SiOx/graphite/rGO-CNTs@C composite with dense structure for high performance lithium-ion battery
anode. J Energy Storage 2023;72:108452. DOI
26. Xu Q, Sun JK, Yin YX, Guo YG. Facile synthesis of blocky SiOx/C with graphite-like structure for high-performance lithium-ion
battery anodes. Adv Funct Mater 2018;28:1705235. DOI
27. Lu C, Li X, Liu R, et al. Optimized Ti-O subcompounds and elastic expanded MXene interlayers boost quick sodium storage
performance. Adv Funct Mater 2023;33:2215228. DOI
28. Zhang K, Mao H, Gu X, Song C, Yang J, Qian Y. ZIF-derived cobalt-containing N-doped carbon-coated SiOx nanoparticles for
superior lithium storage. ACS Appl Mater Interfaces 2020;12:7206-11. DOI PubMed
29. Hasan MT, Gonzalez-Rodriguez R, Ryan C, Faerber N, Coffer JL, Naumov AV. Photo-and electroluminescence from nitrogen-doped
and nitrogen-sulfur codoped graphene quantum dots. Adv Funct Mater 2018;28:1804337. DOI
30. Zhang K, Zhao D, Qian Z, Gu X, Yang J, Qian Y. N-doped Ti C Tx MXene sheet-coated SiOx to boost lithium storage for lithium-ion
3 2
batteries. Sci China Mater 2023;66:51-60. DOI
31. Xu E, Zhang Y, Lin L. Improvement of mechanical, hydrophobicity, and thermal properties of chinese fir wood by impregnation of
nano silica sol. Polymers 2020;12:1632. DOI PubMed PMC
32. Han M, Yu Jie. Subnanoscopically and homogeneously dispersed SiO /C composite spheres for high-performance lithium ion battery
x
anodes. J Power Sources 2019;414:435-43. DOI
33. Lu B, Ma B, Deng X, et al. Cornlike ordered mesoporous silicon particles modified by nitrogen-doped carbon layer for the application
of Li-ion battery. ACS Appl Mater Interfaces 2017;9:32829-39. DOI PubMed
34. Kuang S, Xu D, Chen W, et al. In situ construction of bamboo charcoal derived SiO embedded in hierarchical porous carbon
x
framework as stable anode material for superior lithium storage. Appl Surf Sci 2020;521:146497. DOI
35. Mu T, Zuo P, Lou S, et al. A three-dimensional silicon/nitrogen-doped graphitized carbon composite as high-performance anode
material for lithium ion batteries. J Alloy Compd 2019;777:190-7. DOI