Page 67 - Read Online
P. 67
Page 16 of 16 Mu et al. Energy Mater 2022;2:200043 https://dx.doi.org/10.20517/energymater.2022.57
75. Tang J, Kye DK, Pol VG. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of
sodium-ion batteries. J Power Sources 2018;396:476-82. DOI
76. Liu Z, Ma S, Mu X, et al. A scalable cathode chemical prelithiation strategy for advanced silicon-based lithium ion full batteries. ACS
Appl Mater Interfaces 2021;13:11985-94. DOI PubMed
77. Yue H, Zhang S, Feng T, et al. Understanding of the mechanism enables controllable chemical prelithiation of anode materials for
lithium-ion batteries. ACS Appl Mater Interfaces 2021;13:53996-4004. DOI PubMed
78. Shen Y, Zhang J, Pu Y, et al. Effective chemical prelithiation strategy for building a silicon/sulfur li-ion battery. ACS Energy Lett
2019;4:1717-24. DOI
79. Jang J, Kang I, Choi J, et al. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion
battery anodes. Angew Chem Int Ed 2020;59:14473-80. DOI PubMed
80. Zheng G, Lin Q, Ma J, et al. Ultrafast presodiation of graphene anodes for high-efficiency and high-rate sodium-ion storage. InfoMat
2021;3:1445-54. DOI
81. Cao Y, Zhang T, Zhong X, Zhai T, Li H. A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials. Chem
Commun 2019;55:14761-4. DOI PubMed
82. Zhou J, Ye W, Lian X, et al. Advanced red phosphorus/carbon composites with practical application potential for sodium ion batteries.
Energy Storage Mater 2022;46:20-8. DOI
83. Liu S, Bai M, Tang X, et al. Enabling high-performance sodium metal anode via a presodiated alloy-induced interphase. Chem Eng J
2021;417:128997. DOI