Page 66 - Read Online
P. 66

Mu et al. Energy Mater 2022;2:200043  https://dx.doi.org/10.20517/energymater.2022.57  Page 15 of 16

               45.      Ji L, Gu M, Shao Y, et al. Controlling SEI formation on SnSb-Porous carbon nanofibers for improved Na ion storage. Adv Mater
                   2014;26:2901-8.  DOI  PubMed
               46.      Zhang J, Zhang K, Yang J, et al. Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium
                   storage. Chem Mater 2020;32:448-58.  DOI
               47.      Darwiche A, Bodenes L, Madec L, Monconduit L, Martinez H. Impact of the salts and solvents on the SEI formation in Sb/Na
                   batteries: an XPS analysis. Electrochim Acta 2016;207:284-92.  DOI
               48.      Zhao Y, Yang X, Kuo L-Y, et al. High capacity, dendrite-free growth, and minimum volume change na metal anode. Small
                   2018;14:1703717.  DOI  PubMed
               49.      Lao M, Zhang Y, Luo W, et al. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater 2017;29:1700622.
                   DOI  PubMed
               50.      Nazarian-Samani M, Nazarian-Samani M, Haghighat-Shishavan S, Kim K-B. Predelithiation-driven ultrastable Na-ion battery
                   performance using Si,P-rich ternary M-Si-P anodes. Energy Storage Mater 2022;49:421-32.  DOI
               51.      Sun B, Li P, Zhang J, et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv Mater 2018;30:1801334.
                   DOI  PubMed
               52.      Chen QD, Yuan SF, Dai JH, Song Y. Functionalized M TiC T  MXenes (M = Cr and Mo; T = F, O, and OH) as high performance
                                                        2  2  x
                   electrode materials for sodium ion batteries. Phys Chem Chem Phys 2021;23:1038-49.  DOI  PubMed
               53.      Xie B, Zuo P, Wang L, et al. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice
                   substitution and coordinated water capture. Nano Energy 2019;61:201-10.  DOI
               54.      Xie F, Xu Z, Jensen ACS, et al. Hard-soft carbon composite anodes with synergistic sodium storage performance. Adv Funct Mater
                   2019;29:1901072.  DOI
               55.      Li Q, Zhu Y, Zhao P, et al. Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-
                   ion batteries anode. Carbon 2018;129:85-94.  DOI
               56.      Lu H, Chen X, Jia Y, et al. Engineering Al O  atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical
                                               2  3
                   sodium ion batteries. Nano Energy 2019;64:103903.  DOI
               57.      Chen C, Huang Y, Zhu Y, et al. Nonignorable influence of oxygen in hard carbon for sodium ion storage. ACS Sustain Chem Eng
                   2020;8:1497-506.  DOI
               58.      Qi Y, Li J, Zhong W, Bao S, Xu M. KTiOPO : a long-life, high-rate and low-temperature-workable host for Na/K-ion batteries. Chem
                                                 4
                   Eng J 2021;417:128159.  DOI
               59.      Jo JH, Choi JU, Park YJ, et al. A new pre-sodiation additive for sodium-ion batteries. Energy Storage Mater 2020;32:281-9.  DOI
               60.      Sun C, Zhang X, Li C, et al. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high
                   energy density. J Energy Chem 2022;64:442-50.  DOI
               61.      Shen B, Zhan R, Dai C, et al. Manipulating irreversible phase transition of NaCrO  towards an effective sodium compensation additive
                                                                        2
                   for superior sodium-ion full cells. J Colloid Interface Sci 2019;553:524-9.  DOI  PubMed
               62.      Zhang Q, Gao X-W, Shi Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long
                   lifespan. Energy Storage Mater 2021;39:54-9.  DOI
               63.      Liu X, Tan Y, Wang W, et al. Ultrafine sodium sulfide clusters confined in carbon nano-polyhedrons as high-efficiency presodiation
                   reagents for sodium-ion batteries. ACS Appl Mater Interfaces 2021;13:27057-65.  DOI  PubMed
               64.      Pan X, Chojnacka A, Jeżowski P, Béguin F. Na S sacrificial cathodic material for high performance sodium-ion capacitors.
                                                     2
                   Electrochim Acta 2019;318:471-8.  DOI
               65.      De Ilarduya J, Otaegui L, López del Amo JM, Armand M, Singh G. NaN  addition, a strategy to overcome the problem of sodium
                                                                    3
                   deficiency in P2-Na 0.67 [Fe Mn ]O  cathode for sodium-ion battery. J Power Sources 2017;337:197-203.  DOI
                                          2
                                    0.5
                                       0.5
               66.      Park K, Yu B-C, Goodenough JB. Electrochemical and chemical properties of Na NiO  as a cathode additive for a rechargeable
                                                                           2  2
                   sodium battery. Chem Mater 2015;27:6682-8.  DOI
               67.      Zou K, Song Z, Gao X, et al. Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors. Angew Chem
                   Int Ed 2021;60:17070-9.  DOI  PubMed
               68.      Zou K, Song Z, Liu H, et al. Electronic effect and regiochemistry of substitution in pre-sodiation chemistry. J Phys Chem Lett
                   2021;12:11968-79.  DOI  PubMed
               69.      Song Z, Zhang G, Deng X, et al. Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nanomicro Lett
                   2022;14:53.  DOI  PubMed  PMC
               70.      Ding F, Meng Q, Yu P, et al. Additive-free self-presodiation strategy for high-performance Na-ion batteries. Adv Funct Mater
                   2021;31:2101475.  DOI
               71.      Mirza S, Song Z, Zhang H, et al. A simple pre-sodiation strategy to improve the performance and energy density of sodium ion
                   batteries with Na V (PO )  as the cathode material. J Mater Chem A 2020;8:23368-75.  DOI
                              4  2  4 3
               72.      Marinaro M, Weinberger M, Wohlfahrt-Mehrens M. Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries.
                   Electrochim Acta 2016;206:99-107.  DOI
               73.      Liu W, Chen X, Zhang C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na. ACS Appl
                   Mater Interfaces 2019;11:23207-12.  DOI  PubMed
               74.      Moeez I, Jung H-G, Lim H-D, Chung KY. Presodiation strategies and their effect on electrode-electrolyte interphases for high-
                   performance electrodes for sodium-ion batteries. ACS Appl Mater Interfaces 2019;11:41394-401.  DOI  PubMed
   61   62   63   64   65   66   67   68   69   70   71