Page 66 - Read Online
P. 66
Mu et al. Energy Mater 2022;2:200043 https://dx.doi.org/10.20517/energymater.2022.57 Page 15 of 16
45. Ji L, Gu M, Shao Y, et al. Controlling SEI formation on SnSb-Porous carbon nanofibers for improved Na ion storage. Adv Mater
2014;26:2901-8. DOI PubMed
46. Zhang J, Zhang K, Yang J, et al. Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium
storage. Chem Mater 2020;32:448-58. DOI
47. Darwiche A, Bodenes L, Madec L, Monconduit L, Martinez H. Impact of the salts and solvents on the SEI formation in Sb/Na
batteries: an XPS analysis. Electrochim Acta 2016;207:284-92. DOI
48. Zhao Y, Yang X, Kuo L-Y, et al. High capacity, dendrite-free growth, and minimum volume change na metal anode. Small
2018;14:1703717. DOI PubMed
49. Lao M, Zhang Y, Luo W, et al. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater 2017;29:1700622.
DOI PubMed
50. Nazarian-Samani M, Nazarian-Samani M, Haghighat-Shishavan S, Kim K-B. Predelithiation-driven ultrastable Na-ion battery
performance using Si,P-rich ternary M-Si-P anodes. Energy Storage Mater 2022;49:421-32. DOI
51. Sun B, Li P, Zhang J, et al. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv Mater 2018;30:1801334.
DOI PubMed
52. Chen QD, Yuan SF, Dai JH, Song Y. Functionalized M TiC T MXenes (M = Cr and Mo; T = F, O, and OH) as high performance
2 2 x
electrode materials for sodium ion batteries. Phys Chem Chem Phys 2021;23:1038-49. DOI PubMed
53. Xie B, Zuo P, Wang L, et al. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice
substitution and coordinated water capture. Nano Energy 2019;61:201-10. DOI
54. Xie F, Xu Z, Jensen ACS, et al. Hard-soft carbon composite anodes with synergistic sodium storage performance. Adv Funct Mater
2019;29:1901072. DOI
55. Li Q, Zhu Y, Zhao P, et al. Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-
ion batteries anode. Carbon 2018;129:85-94. DOI
56. Lu H, Chen X, Jia Y, et al. Engineering Al O atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical
2 3
sodium ion batteries. Nano Energy 2019;64:103903. DOI
57. Chen C, Huang Y, Zhu Y, et al. Nonignorable influence of oxygen in hard carbon for sodium ion storage. ACS Sustain Chem Eng
2020;8:1497-506. DOI
58. Qi Y, Li J, Zhong W, Bao S, Xu M. KTiOPO : a long-life, high-rate and low-temperature-workable host for Na/K-ion batteries. Chem
4
Eng J 2021;417:128159. DOI
59. Jo JH, Choi JU, Park YJ, et al. A new pre-sodiation additive for sodium-ion batteries. Energy Storage Mater 2020;32:281-9. DOI
60. Sun C, Zhang X, Li C, et al. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high
energy density. J Energy Chem 2022;64:442-50. DOI
61. Shen B, Zhan R, Dai C, et al. Manipulating irreversible phase transition of NaCrO towards an effective sodium compensation additive
2
for superior sodium-ion full cells. J Colloid Interface Sci 2019;553:524-9. DOI PubMed
62. Zhang Q, Gao X-W, Shi Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long
lifespan. Energy Storage Mater 2021;39:54-9. DOI
63. Liu X, Tan Y, Wang W, et al. Ultrafine sodium sulfide clusters confined in carbon nano-polyhedrons as high-efficiency presodiation
reagents for sodium-ion batteries. ACS Appl Mater Interfaces 2021;13:27057-65. DOI PubMed
64. Pan X, Chojnacka A, Jeżowski P, Béguin F. Na S sacrificial cathodic material for high performance sodium-ion capacitors.
2
Electrochim Acta 2019;318:471-8. DOI
65. De Ilarduya J, Otaegui L, López del Amo JM, Armand M, Singh G. NaN addition, a strategy to overcome the problem of sodium
3
deficiency in P2-Na 0.67 [Fe Mn ]O cathode for sodium-ion battery. J Power Sources 2017;337:197-203. DOI
2
0.5
0.5
66. Park K, Yu B-C, Goodenough JB. Electrochemical and chemical properties of Na NiO as a cathode additive for a rechargeable
2 2
sodium battery. Chem Mater 2015;27:6682-8. DOI
67. Zou K, Song Z, Gao X, et al. Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors. Angew Chem
Int Ed 2021;60:17070-9. DOI PubMed
68. Zou K, Song Z, Liu H, et al. Electronic effect and regiochemistry of substitution in pre-sodiation chemistry. J Phys Chem Lett
2021;12:11968-79. DOI PubMed
69. Song Z, Zhang G, Deng X, et al. Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors. Nanomicro Lett
2022;14:53. DOI PubMed PMC
70. Ding F, Meng Q, Yu P, et al. Additive-free self-presodiation strategy for high-performance Na-ion batteries. Adv Funct Mater
2021;31:2101475. DOI
71. Mirza S, Song Z, Zhang H, et al. A simple pre-sodiation strategy to improve the performance and energy density of sodium ion
batteries with Na V (PO ) as the cathode material. J Mater Chem A 2020;8:23368-75. DOI
4 2 4 3
72. Marinaro M, Weinberger M, Wohlfahrt-Mehrens M. Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries.
Electrochim Acta 2016;206:99-107. DOI
73. Liu W, Chen X, Zhang C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na. ACS Appl
Mater Interfaces 2019;11:23207-12. DOI PubMed
74. Moeez I, Jung H-G, Lim H-D, Chung KY. Presodiation strategies and their effect on electrode-electrolyte interphases for high-
performance electrodes for sodium-ion batteries. ACS Appl Mater Interfaces 2019;11:41394-401. DOI PubMed