Page 65 - Read Online
P. 65
Page 14 of 16 Mu et al. Energy Mater 2022;2:200043 https://dx.doi.org/10.20517/energymater.2022.57
15. Cai P, Zou K, Deng X, et al. Comprehensive understanding of sodium-ion capacitors: definition, mechanisms, configurations,
materials, key technologies, and future developments. Adv Energy Mater 2021;11:2003804. DOI
16. Deng X, Zou K, Cai P, et al. Advanced battery-type anode materials for high-performance sodium-ion capacitors. Small Methods
2020;4:2000401. DOI
17. Li P, Kim H, Ming J, et al. Quasi-compensatory effect in emerging anode-free lithium batteries. eScience 2021;1:3-12. DOI
18. Zhao-Karger Z, Gao P, Ebert T, et al. New organic electrode materials for ultrafast electrochemical energy storage. Adv Mater
2019;31:1806599. DOI PubMed
19. Fang Y, Yu X-Y, Lou XW. Nanostructured electrode materials for advanced sodium-ion batteries. Matter 2019;1:90-114. DOI
20. Tang J, Huang X, Lin T, et al. MXene derived TiS nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage
2
Mater 2020;26:550-9. DOI
21. Tang J, Peng X, Lin T, et al. Confining ultrafine tin monophosphide in Ti C T interlayers for rapid and stable sodium ion storage.
3 2 x
eScience 2021;1:203-11. DOI
22. Sun D, Luo B, Wang H, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high
initial Coulombic efficiency. Nano Energy 2019;64:103937. DOI
23. Jin MY, Guo K, Xiao X, et al. Optimum particle size in silicon electrodes dictated by chemomechanical deformation of the SEI. Adv
Funct Mater 2021;31:2010640. DOI
24. He H, Sun D, Tang Y, Wang H, Shao M. Understanding and improving the initial Coulombic efficiency of high-capacity anode
materials for practical sodium ion batteries. Energy Storage Mater 2019;23:233-51. DOI
25. Wan Y, Song K, Chen W, et al. Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium
storage. Angew Chem Int Ed 2021;60:11481-6. DOI PubMed
26. Ren Q, Wang J, Yan L, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial
Coulombic efficiency and storage sodium behavior. Chem Eng J 2021;425:131656. DOI
27. Tang Y, Wang X, Chen J, Wang D, Mao Z. Synthesis of presodiated B, N Co-doped carbon materials and application in sodium ions
batteries with enhanced initial coulombic efficiency. Chem Eng J 2022;427:131951. DOI
28. Zhang H, Zhang W, Huang F. Graphene inducing graphitization: towards a hard carbon anode with ultrahigh initial coulombic
efficiency for sodium storage. Chem Eng J 2022;434:134503. DOI
29. Lyu T, Liang L, Kang Shen P. Hollow porous carbon spheres for high initial coulombic efficiency and low-potential sodium ion
storage. J Colloid Interface Sci 2021;604:168-77. DOI PubMed
30. Liu M, Zhang J, Guo S, et al. Chemically Presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy
sodium ion batteries. ACS Appl Mater Interfaces 2020;12:17620-27. DOI PubMed
31. Zou K, Cai P, Tian Y, et al. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods
2020;4:1900763. DOI
32. Liu X, Tan Y, Liu T, et al. A Simple electrode-level chemical presodiation route by solution spraying to improve the energy density of
sodium-ion batteries. Adv Funct Mater 2019;29:1903795. DOI
33. Zou K, Deng W, Cai P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts,
applications, and perspectives. Adv Funct Mater 2021;31:2005581. DOI
34. Liu Y, Bai M, Wang H, et al. Capillary force induced the sodium metal infusion in the Sn@HCNF scaffold: A mechanical flexible
metallic battery. J Power Sources 2022;545:231885. DOI
35. Dewar D, Glushenkov AM. Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging
field. Energy Environ Sci 2021;14:1380-401. DOI
36. Zhang T, Wang R, He B, et al. Recent advances on pre-sodiation in sodium-ion capacitors: a mini review. Electrochem Commun
2021;129:107090. DOI
37. Chojnacka A, Pan X, Bachetzky C, Brunner E, Béguin F. A strategy for optimizing the output energy and durability of metal-ion
capacitors fabricated with alloy-based anodes. Energy Storage Mater 2022;51:719-32. DOI
38. Yang F, Ding R, Jia Z, et al. High specific energy and power sodium-based dual-ion supercabatteries by pseudocapacitive Ni-Zn-Mn
ternary perovskite fluorides@reduced graphene oxides anodes with conversion-alloying-intercalation triple mechanisms. Energy
Storage Mater 2022;53:222-37. DOI
39. Zhao J, Sun J, Pei A, et al. A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Mater
2018;10:275-81. DOI
40. Yang S-Y, Yue X-Y, Xia H-Y, et al. Battery prelithiation enabled by lithium fixation on cathode. J Power Sources 2020;480:229109.
DOI
41. Sun Y, Lee H-W, Seh ZW, et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy 2016;1:15008.
DOI
42. Li F, Cao Y, Wu W, Wang G, Qu D. Prelithiation bridges the gap for developing next-generation lithium-ion batteries/capacitors.
Small Methods 2022;6:2200411. DOI PubMed
43. Song Z, Zou K, Xiao X, et al. Presodiation strategies for the promotion of sodium-based energy storage systems. Chem A Eur J
2021;27:16082-92. DOI PubMed
44. Liu W, Liu P, Mitlin D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium
metal battery anodes. Adv Energy Mater 2020;10:2002297. DOI