Page 65 - Read Online
P. 65

Page 14 of 16              Mu et al. Energy Mater 2022;2:200043  https://dx.doi.org/10.20517/energymater.2022.57

               15.      Cai P, Zou K, Deng X, et al. Comprehensive understanding of sodium-ion capacitors: definition, mechanisms, configurations,
                   materials, key technologies, and future developments. Adv Energy Mater 2021;11:2003804.  DOI
               16.      Deng X, Zou K, Cai P, et al. Advanced battery-type anode materials for high-performance sodium-ion capacitors. Small Methods
                   2020;4:2000401.  DOI
               17.      Li P, Kim H, Ming J, et al. Quasi-compensatory effect in emerging anode-free lithium batteries. eScience 2021;1:3-12.  DOI
               18.      Zhao-Karger Z, Gao P, Ebert T, et al. New organic electrode materials for ultrafast electrochemical energy storage. Adv Mater
                   2019;31:1806599.  DOI  PubMed
               19.      Fang Y, Yu X-Y, Lou XW. Nanostructured electrode materials for advanced sodium-ion batteries. Matter 2019;1:90-114.  DOI
               20.      Tang J, Huang X, Lin T, et al. MXene derived TiS  nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage
                                                     2
                   Mater 2020;26:550-9.  DOI
               21.      Tang J, Peng X, Lin T, et al. Confining ultrafine tin monophosphide in Ti C T  interlayers for rapid and stable sodium ion storage.
                                                                    3  2  x
                   eScience 2021;1:203-11.  DOI
               22.      Sun D, Luo B, Wang H, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high
                   initial Coulombic efficiency. Nano Energy 2019;64:103937.  DOI
               23.      Jin MY, Guo K, Xiao X, et al. Optimum particle size in silicon electrodes dictated by chemomechanical deformation of the SEI. Adv
                   Funct Mater 2021;31:2010640.  DOI
               24.      He H, Sun D, Tang Y, Wang H, Shao M. Understanding and improving the initial Coulombic efficiency of high-capacity anode
                   materials for practical sodium ion batteries. Energy Storage Mater 2019;23:233-51.  DOI
               25.      Wan Y, Song K, Chen W, et al. Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium
                   storage. Angew Chem Int Ed 2021;60:11481-6.  DOI  PubMed
               26.      Ren Q, Wang J, Yan L, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial
                   Coulombic efficiency and storage sodium behavior. Chem Eng J 2021;425:131656.  DOI
               27.      Tang Y, Wang X, Chen J, Wang D, Mao Z. Synthesis of presodiated B, N Co-doped carbon materials and application in sodium ions
                   batteries with enhanced initial coulombic efficiency. Chem Eng J 2022;427:131951.  DOI
               28.      Zhang H, Zhang W, Huang F. Graphene inducing graphitization: towards a hard carbon anode with ultrahigh initial coulombic
                   efficiency for sodium storage. Chem Eng J 2022;434:134503.  DOI
               29.      Lyu T, Liang L, Kang Shen P. Hollow porous carbon spheres for high initial coulombic efficiency and low-potential sodium ion
                   storage. J Colloid Interface Sci 2021;604:168-77.  DOI  PubMed
               30.      Liu M, Zhang J, Guo S, et al. Chemically Presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy
                   sodium ion batteries. ACS Appl Mater Interfaces 2020;12:17620-27.  DOI  PubMed
               31.      Zou K, Cai P, Tian Y, et al. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods
                   2020;4:1900763.  DOI
               32.      Liu X, Tan Y, Liu T, et al. A Simple electrode-level chemical presodiation route by solution spraying to improve the energy density of
                   sodium-ion batteries. Adv Funct Mater 2019;29:1903795.  DOI
               33.      Zou K, Deng W, Cai P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts,
                   applications, and perspectives. Adv Funct Mater 2021;31:2005581.  DOI
               34.      Liu Y, Bai M, Wang H, et al. Capillary force induced the sodium metal infusion in the Sn@HCNF scaffold: A mechanical flexible
                   metallic battery. J Power Sources 2022;545:231885.  DOI
               35.      Dewar D, Glushenkov AM. Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging
                   field. Energy Environ Sci 2021;14:1380-401.  DOI
               36.      Zhang T, Wang R, He B, et al. Recent advances on pre-sodiation in sodium-ion capacitors: a mini review. Electrochem Commun
                   2021;129:107090.  DOI
               37.      Chojnacka A, Pan X, Bachetzky C, Brunner E, Béguin F. A strategy for optimizing the output energy and durability of metal-ion
                   capacitors fabricated with alloy-based anodes. Energy Storage Mater 2022;51:719-32.  DOI
               38.      Yang F, Ding R, Jia Z, et al. High specific energy and power sodium-based dual-ion supercabatteries by pseudocapacitive Ni-Zn-Mn
                   ternary perovskite fluorides@reduced graphene oxides anodes with conversion-alloying-intercalation triple mechanisms. Energy
                   Storage Mater 2022;53:222-37.  DOI
               39.      Zhao J, Sun J, Pei A, et al. A general prelithiation approach for group IV elements and corresponding oxides. Energy Storage Mater
                   2018;10:275-81.  DOI
               40.      Yang S-Y, Yue X-Y, Xia H-Y, et al. Battery prelithiation enabled by lithium fixation on cathode. J Power Sources 2020;480:229109.
                   DOI
               41.      Sun Y, Lee H-W, Seh ZW, et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy 2016;1:15008.
                   DOI
               42.      Li F, Cao Y, Wu W, Wang G, Qu D. Prelithiation bridges the gap for developing next-generation lithium-ion batteries/capacitors.
                   Small Methods 2022;6:2200411.  DOI  PubMed
               43.      Song Z, Zou K, Xiao X, et al. Presodiation strategies for the promotion of sodium-based energy storage systems. Chem A Eur J
                   2021;27:16082-92.  DOI  PubMed
               44.      Liu W, Liu P, Mitlin D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium
                   metal battery anodes. Adv Energy Mater 2020;10:2002297.  DOI
   60   61   62   63   64   65   66   67   68   69   70